1. |
Y. Gong, B. Wang, H. Ren, D. Li, D. Wang et al., Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: principles, strategies, and challenges. Nano-Micro Lett. 15, 208 ( 2023). https://doi.org/10.1007/s40820-023-01177-4
|
2. |
P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61, 2200598 ( 2022). https://doi.org/10.1002/anie.202200598
|
3. |
J.-L. Yang, J. Li, J.-W. Zhao, K. Liu, P. Yang et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34, e2202382 ( 2022). https://doi.org/10.1002/adma.202202382
|
4. |
|
5. |
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 ( 2022). https://doi.org/10.1007/s40820-022-00960-z
|
6. |
J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15, 97 ( 2023). https://doi.org/10.1007/s40820-023-01072-y
|
7. |
X. Guo, G. He, Opportunities and challenges of zinc anodes in rechargeable aqueous batteries. J. Mater. Chem. A 11, 11987-12001 ( 2023). https://doi.org/10.1039/d3ta01904g
|
8. |
|
9. |
R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15, 81 ( 2023). https://doi.org/10.1007/s40820-023-01050-4
|
10. |
D. Gomez Vazquez, T.P. Pollard, J. Mars, J.M. Yoo, H.-G. Steinrück et al., Creating water-in-salt-like environment using coordinating anions in non-concentrated aqueous electrolytes for efficient Zn batteries. Energy Environ. Sci. 16, 1982-1991 ( 2023). https://doi.org/10.1039/D3EE00205E
|
11. |
M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H 2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, 2215552 ( 2023). https://doi.org/10.1002/anie.202215552
|
12. |
Z. Meng, Y. Jiao, P. Wu, Alleviating side reactions on Zn anodes for aqueous batteries by a cell membrane derived phosphorylcholine zwitterionic protective layer. Angew. Chem. Int. Ed. 62, 2307271 ( 2023). https://doi.org/10.1002/anie.202307271
|
13. |
X. Li, D. Wang, F. Ran, Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Storage Mater. 56, 351-393 ( 2023). https://doi.org/10.1016/j.ensm.2023.01.034
|
14. |
E. Lizundia, D. Kundu, Advances in natural biopolymer-based electrolytes and separators for battery applications. Adv. Funct. Mater. 31, 2005646 ( 2021). https://doi.org/10.1002/adfm.202005646
|
15. |
X. Ge, W. Zhang, F. Song, B. Xie, J. Li et al., Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries. Adv. Funct. Mater. 32, 2200429 ( 2022). https://doi.org/10.1002/adfm.202200429
|
16. |
|
17. |
L. Hong, X. Wu, Y.-S. Liu, C. Yu, Y. Liu et al., Self-adapting and self-healing hydrogel interface with fast Zn 2+ transport kinetics for highly reversible Zn anodes. Adv. Funct. Mater. 33, 2300952 ( 2023). https://doi.org/10.1002/adfm.202300952
|
18. |
J.-H. Park, S. Hyun Park, D. Joung, C. Kim, Sustainable biopolymeric hydrogel interphase for dendrite-free aqueous zinc-ion batteries. Chem. Eng. J. 433, 133532 ( 2022). https://doi.org/10.1016/j.cej.2021.133532
|
19. |
|
20. |
J. Fu, H. Wang, P. Xiao, C. Zeng, Q. Sun et al., A high strength, anti-corrosion and sustainable separator for aqueous zinc-based battery by natural bamboo cellulose. Energy Storage Mater. 48, 191-191.f6 ( 2022). https://doi.org/10.1016/j.ensm.2022.02.052
|
21. |
D. Wang, H. Li, Z. Liu, Z. Tang, G. Liang et al., A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO 2 battery with superior shear resistance. Small 14, e1803978 ( 2018). https://doi.org/10.1002/smll.201803978
|
22. |
F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao et al., Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO 2 batteries with superior rate capabilities. Adv. Energy Mater. 10, 2000035 ( 2020). https://doi.org/10.1002/aenm.202000035
|
23. |
D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang et al., High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 26, 6279-6287 ( 2016). https://doi.org/10.1002/adfm.201601645
|
24. |
F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28, 1804975 ( 2018). https://doi.org/10.1002/adfm.201804975
|
25. |
J. Zhou, C. Chang, R. Zhang, L. Zhang, Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol. Biosci. 7, 804-809 ( 2007). https://doi.org/10.1002/mabi.200700007
|
26. |
C. Chang, L. Zhang, J. Zhou, L. Zhang, J.F. Kennedy, Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr. Polym. 82, 122-127 ( 2010). https://doi.org/10.1016/j.carbpol.2010.04.033
|
27. |
D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358-3393 ( 2005). https://doi.org/10.1002/anie.200460587
|
28. |
M. Chen, W. Zhou, A. Wang, A. Huang, J. Chen et al., Anti-freezing flexible aqueous Zn-MnO 2 batteries working at -35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J. Mater. Chem. A 8, 6828-6841 ( 2020). https://doi.org/10.1039/D0TA01553A
|
29. |
M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO 2 batteries. Adv. Mater. 33, e2007559 ( 2021). https://doi.org/10.1002/adma.202007559
|
30. |
L. Xu, T. Meng, X. Zheng, T. Li, A.H. Brozena et al., Nanocellulose-carboxymethylcellulose electrolyte for stable, high-rate zinc-ion batteries. Adv. Funct. Mater. 33, 2302098 ( 2023). https://doi.org/10.1002/adfm.202302098
|
31. |
D. Ye, C. Chang, L. Zhang, High-strength and tough cellulose hydrogels chemically dual cross-linked by using low- and high-molecular-weight cross-linkers. Biomacromol 20, 1989-1995 ( 2019). https://doi.org/10.1021/acs.biomac.9b00204
|
32. |
H. Zhang, X. Gan, Z. Song, J. Zhou, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed. 62, 2217833 ( 2023). https://doi.org/10.1002/anie.202217833
|
33. |
T. Chen, Z. Shuang, J. Hu, Y. Zhao, D. Wei et al., Freestanding 3D metallic micromesh for high-performance flexible transparent solid-state zinc batteries. Small 18, e2201628 ( 2022). https://doi.org/10.1002/smll.202201628
|
34. |
|
35. |
M. Peng, X. Tang, K. Xiao, T. Hu, K. Yuan et al., Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries. Angew. Chem. Int. Ed. 62, 2302701 ( 2023). https://doi.org/10.1002/anie.202302701
|
36. |
W. Zhang, F. Guo, H. Mi, Z.-S. Wu, C. Ji et al., Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Adv. Energy Mater. 12, 2202219 ( 2022). https://doi.org/10.1002/aenm.202202219
|
37. |
W. Chen, S. Guo, L. Qin, L. Li, X. Cao et al., Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces. Adv. Funct. Mater. 32, 2112609 ( 2022). https://doi.org/10.1002/adfm.202112609
|
38. |
F. Cao, B. Wu, T. Li, S. Sun, Y. Jiao et al., Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance. Nano Res. 15, 2030-2039 ( 2022). https://doi.org/10.1007/s12274-021-3770-8
|
39. |
C. Kim, B.Y. Ahn, T.S. Wei, Y. Jo, S. Jeong et al., High-power aqueous zinc-ion batteries for customized electronic devices. ACS Nano 12, 11838-11846 ( 2018). https://doi.org/10.1021/acsnano.8b02744
|
40. |
J. Shi, T. Sun, J. Bao, S. Zheng, H. Du et al., “water-in-deep eutectic solvent” electrolytes for high-performance aqueous Zn-ion batteries. Adv. Funct. Mater. 31, 2102035 ( 2021). https://doi.org/10.1002/adfm.202102035
|
41. |
|
42. |
|
43. |
|
44. |
D. Feng, Y. Jiao, P. Wu, Proton-reservoir hydrogel electrolyte for long-term cycling Zn/PANI batteries in wide temperature range. Angew. Chem. Int. Ed. 62, 2215060 ( 2023). https://doi.org/10.1002/anie.202215060
|
45. |
Y. Liu, Z. Dai, W. Zhang, Y. Jiang, J. Peng et al., Sulfonic-group-grafted Ti 3C 2T x MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano 15, 9065-9075 ( 2021). https://doi.org/10.1021/acsnano.1c02215
|