Most Viewed

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All

Please wait a minute...
  • Select all
    |
  • Research article
    Huadong Yong, Dong Wei, Yunkai Tang, Donghui Liu
    Superconductivity. 2024, 10(0): 100097. https://doi.org/10.1016/j.supcon.2024.100097

    (Re)Ba2Cu3O7-x (REBCO) coated conductors (CCs) have attracted considerable concern because of their outstanding current carrying capacity in magnetic fields of high strengths. A huge electromagnetic force is generated in the superconducting coil when conducting large currents in strong magnetic field. Thus, management of stress and strain has become a key technical challenge for the stability and safety of superconducting coil during operation. To accurately predict the electro-magnetic and mechanical characteristics of superconducting coil in strong magnetic field, an electromechanical model on the basis of the H-formulation and arbitrary Lagrangian-Eulerian (ALE) method is proposed here with FE software. To verify the proposed model, the simulation outcomes of the coil during magnetization are compared with the experimental outcomes. The coupling effect of magnet at high field strengths is dependent on the position of the coil. To reduce the screening current effect, the overshoot method with plateau is found superior to the traditional overshoot method, and an increase in the stabilization time can decrease the maximum value of stress. Finally, the electromechanical behaviors of single winding coil and two-tapes co-winding coil are compared.

  • Research article
    Yuting Jiang, Xingyu Zhang, Hui Zhou, Xiaofu Zhang, Hao Li, Lixing You
    Superconductivity. 2024, 10(0): 100096. https://doi.org/10.1016/j.supcon.2024.100096

    We systematically investigated the detection performance of Al nanostrips for single photons at various wavelengths. The Al films were deposited using magnetron sputtering, and the sophisticated nanostructures and morphology of the deposited films were revealed through high-resolution transmission electron microscopy. The fabricated Al meander nanostrips, with a thickness of 4.2 nm and a width of 178 nm, exhibited a superconducting transition temperature of 2.4 K and a critical current of approximately 5 μA at 0.85 K. While the Al nanostrips demonstrated a saturated internal quantum efficiency for 405-nm photons, the internal detection efficiency exhibited an exponential dependence on bias current without any saturation tendency for 1550-nm photons. This behavior can be attributed to the relatively large diffusion coefficient and coherence length of the Al films. By further narrowing the nanostrip width, the Al-SNSPDs remain capable of effectively detecting single telecom photons to facilitate practical applications.

  • Research article
    Shermane M. Benjamin
    Superconductivity. 2024, 10(0): 100098. https://doi.org/10.1016/j.supcon.2024.100098

    Superconductivity is a phenomenon arising from cooperative electron behavior. However, correlations among (1) the minimum tuning parameter required for emergence, (2) the superconducting transition temperature resulting from minimal tuning, and (3) the host's physical/chemical properties still elude the scientific community. Recent empirical investigations, such as those revealing ideal gas-like correlations at the onset of superconductivity in intercalated superconductors, motivate this study. Our investigation reports similar findings in systems (>170 compounds) exhibiting superconductivity through other perturbative means, such as single-element doping. In general, statistical measures, including distance correlation analyses (≠ linear regression fit) of thermodynamic variables, indicate the presence of empirical relationships near the superconducting onset of systematically tuned compounds. These relations involve unit cell volume (V), the number of valence electrons (N), and the superconducting transition temperature (Tc). Note: The author's primary aim is not to validate or challenge BCS theory; it is instead to focus on leveraging methodology led by available data to enhance the exploration and development of innovative and cost-effective superconductors.