当代外语研究 ›› 2025, Vol. 25 ›› Issue (5): 132-142.doi: 10.3969/j.issn.1674-8921.2025.05.014

• 思源学脉 • 上一篇    下一篇

基于生成式AI的自适应写作反馈和任务学习系统理论探究

张荔()   

  1. 上海交通大学,上海,200240
  • 出版日期:2025-10-28 发布日期:2025-11-07
  • 作者简介:张荔,上海交通大学外国语学院教授、博士生导师。主要研究方向为二语习得、人工智能赋能外语教学、学术英语教学。电子邮箱:zhangli@sjtu.edu.cn
  • 基金资助:
    *国家社科基金重点项目“基于生成式AI的自适应写作教学模式构建及应用研究”(项目号24AYY025)

Theoretical Exploration of the Generative AI-Based Adaptive Writing Feedback and Task Learning System

ZHANG Li()   

  • Online:2025-10-28 Published:2025-11-07

摘要:

生成式AI在教育领域的影响日益深远,但现有研究多聚焦于技术层面和实际应用,缺乏对其理论基础的深入探讨。为推动生成式AI在智能系统开发中的理论建设,本研究采用文献综述与理论分析方法,基于语言学、认知心理学及教育学的跨学科视角,系统探讨了基于生成式AI的AWESOM自适应写作反馈与任务学习系统的理论框架。研究指出,语言学理论(如分布式语义学和构式语法)为系统提供了精准的语义与句法分析工具,从而生成更有效的写作反馈和任务建议;认知心理学理论(如认知负荷理论)指导信息呈现与任务设计,旨在减轻学习者的认知负担并优化其知识结构;教育学理论(如最近发展区理论)为动态调整学习任务和反馈提供理论支持,促进个性化学习体验及持续改进。各理论间的协同作用为系统设计奠定坚实基础,提升了其智能化水平与教育效能。该研究为AI赋能教育从单一技术应用走向以跨学科理论为核心的智能体建构提供了新思路。

关键词: 生成式AI, 跨学科视角, 理论探究, AWESOM系统

Abstract:

The impact of generative AI on the field of education is becoming increasingly significant. However, existing research primarily focuses on technical and practical applications, often lacking a thorough analysis of theoretical foundation. To advance the theoretical development of generative AI in artificial intelligence system design, this study employs a literature review and theoretical analysis from the cross disciplinary perspectives of linguistics, cognitive psychology, and education to explore the design principles of generative AI-based writing feedback and adaptive learning system. The findings suggest that the linguistic theories, including Distributional Semantics and Construction Grammar, provide essential semantic and grammatical analysis tools, enabling AI systems to generate more precise writing feedback and task recommendations. Cognitive Load Theory, a cognitive psychology theory, informs system design by guiding information presentation and task structuring to reduce learners’ cognitive load and optimize knowledge acquisition. The educational theory of the Zone of Proximal Development offers a framework for dynamically adjusting learning tasks and feedback, thereby supporting personalized learning experiences and continuous improvement. These theoretical foundations collectively contribute to the intelligent design of the generative AI-based adaptive writing feedback and task learning system, and their interconnections significantly enhance system adaptability and efficiency. The study offers a new perspective for advancing AI-empowered education from a focus on merely technological applications to the construction of intelligent systems grounded in interdisciplinary theories.

Key words: Generative AI, cross disciplinary perspectives, theoretical exploration, AWESOM system

中图分类号: