[1] |
Algerafi, M. A. M., Y. Zhou, H. Alfadda, et al. 2023. Understanding the factors influencing higher education students’ intention to adopt artificial intelligence-based robots[J]. IEEE Access 11: 99752-99764.
|
[2] |
Birk, A. & D. Simunovic. 2021. Robotics labs and other hands-on teaching during COVID-19: Change is here to stay?[J]. IEEE Robotics & Automation Magazine 28(4):92-102.
|
[3] |
Buchem, I. 2023. Scaling-up social learning in small groups with robot supported collaborative learning (RSCL): Effects of learners’ prior experience in the case study of planning poker with the robot NAO[J]. Applied Sciences 13:4106.
|
[4] |
Buote, N. J., B. Fransson & M. Rishniw. 2024. Comparison of attempts needed for veterinary students to reach proficiency in a basic and advanced robotic simulator task[J]. Journal of Veterinary Medical Education 51(1):104-112.
|
[5] |
Chunab-Rodríguez, M. A., A. Santana-Díaz, J. Rodríguez-Arce, et al. 2022. A free simulation environment based on ROS for teaching autonomous vehicle navigation algorithms[J]. Applied Sciences 12:7277.
|
[6] |
Cui, Y., X. Song, Q. Hu, et al. 2022. Human-robot interaction in higher education for predicting student engagement[J]. Computers and Electrical Engineering 99:107827.
|
[7] |
Fitter, N. T., N. Raghunath, E. Cha, et al. 2020. Are we there yet? Comparing remote learning technologies in the university classroom[J]. IEEE Robotics and Automation Letters 5(2): 2706-2713.
|
[8] |
Koike, Y., A. Okino, K. Takeda, et al. 2021. Comparison of manipulative indicators of students and therapists using a robotic arm: A feasibility study[J]. Applied Sciences 11(20):9403.
|
[9] |
Koike, Y., A. Okino, Y. Takanami, et al. 2024. Comparisons of learning effectiveness of therapeutic motion techniques: Practicing with an educational hemiplegic robot arm versus practicing with other students[J]. Applied Sciences 14:8498.
|
[10] |
Lei, M., I. M. Clemente, H. Liu, et al. 2022. The acceptance of telepresence robots in higher education[J]. International Journal of Social Robotics 14(5):1025-1042.
|
[11] |
Leoste, J., S. Virkus, A. Talisainen, et al. 2022. Higher education personnel’s perceptions about telepresence robots[J]. Frontiers in Robotics and AI 9:976836.
|
[12] |
Li, M., L. Chen, M. Wu, et al. 2024. A broad-deep fusion network-based fuzzy emotional intention inference model for teaching validity evaluation[J]. Information Sciences 654:119837.
|
[13] |
Liao, J., X. Lu, K. A. Masters, et al. 2024. Meaning-focused foreign language learning via telepresence robots: A geosemiotic analysis[J]. ReCALL 36(2):168-186.
|
[14] |
Loukatos, D., M. Kondoyanni, I.-V. Kyrtopoulos, et al. 2022. Enhanced robots as tools for assisting agricultural engineering students’ development[J]. Electronics 11(5):755.
|
[15] |
Nunes, L. C. B. 2023. Aplicação do robô colaborativo UR3e no ensino na área da robótica[D]. UBI: Universidade da Beira Interior.
|
[16] |
Ou Yang, F.-C., H.-M. Lai & Y.-W. Wang. 2023. Effect of augmented reality-based virtual educational robotics on programming students’ enjoyment of learning, computational thinking skills, and academic achievement[J]. Computers & Education 195:104721.
|
[17] |
Robinson, N. L., J. Connolly, G. Suddrey, et al. 2024. A brief wellbeing training session delivered by a humanoid social robot: A pilot randomized controlled trial[J]. International Journal of Social Robotics 16(5):937-951.
|
[18] |
Su, H., F. J. Sheiban, W. Qi, et al. 2024. A bioinspired virtual reality toolkit for robot-assisted medical application: BioVRbot[J]. IEEE Transactions on Human-Machine Systems 54(6): 688-698.
|
[19] |
Suarez, A., D. García-Costa, J. Perez, et al. 2023. Hands-on learning: Assessing the impact of a mobile robot platform in engineering learning environments[J]. Sustainability 15:13717.
|
[20] |
Tran, D. T., D. H. Truong, H. S. Le, et al. 2023. Mobile robot: Automatic speech recognition application for automation and STEM education[J]. Soft Computing 27(16):10789-10805.
|
[21] |
Ueyama, Y., T. Sago, T. Kurihara, et al. 2022. An inexpensive autonomous mobile robot for undergraduate education: Integration of Arduino and Hokuyo laser range finders[J]. IEEE Access 10:79029-79040.
|
[22] |
Verner, I. M., D. Cuperman, S. Gamer, et al. 2020. Exploring affordances of robot manipulators in an introductory engineering course[J]. International Journal of Engineering Education 36(5): 1691-1707.
|
[23] |
Vurgun, N., T. Vongsurbchart, A. Myszka, et al. 2021. Medical student experience with robot-assisted surgery after limited laparoscopy exposure[J]. Journal of Robotic Surgery 15(4): 443-450.
|
[24] |
Wang, S., J. Meng, Y. Xie, et al. 2023. Reference training system for intelligent manufacturing talent education: Platform construction and curriculum development[J]. Journal of Intelligent Manufacturing 34(3):1125-1164.
|
[25] |
Xu, Y., G. Bao & X. Duan. 2023. Design and application of VR-based college English game teaching[J]. Entertainment Computing 41:100568.
|
[26] |
Zheng, P., J. Yang, J. Lou, et al. 2024. Design and application of virtual simulation teaching platform for intelligent manufacturing[J]. Scientific Reports 14:2895.
|
[27] |
付艳芳、 杨浩, 方娟, 等. 2022. 基于智能教育机器人的“双师课堂”教学模式构建[J]. 中国教育信息化(1): 56-62.
|
[28] |
黄荣怀、 刘德建、 徐晶晶, 等. 2017. 教育机器人的发展现状与趋势[J]. 现代教育技术(1): 13-20.
|
[29] |
工业和信息化部等十七部门. 2023. “机器人+”应用行动实施方案[EB/OL]. [2025-06-18]. https://www.gov.cn/zhengce/zhengceku/2023-01/19/content_5738112.htm.
|
[30] |
工业和信息化部等十五部门. 2021. “十四五”机器人产业发展规划[EB/OL]. [2025-06-18]. https://www.gov.cn/zhengce/zhengceku/2021-12/28/content_5664988.htm.
|
[31] |
王涛、 王嘉禧、 刘娜, 等. 2023. 教育机器人在基础医学实验教学中的应用探索[J]. 中国医学教育技术(4): 428-432.
|
[32] |
吴永和、 李彤彤. 2018. 机器智能视域下的机器人教育发展现状、实践、反思与展望[J]. 远程教育杂志(4): 79-87.
|
[33] |
张淑雅. 2023. 自主移动型教育机器人辅助的项目式教学模式设计与应用研究[D]. 昆明: 云南师范大学.
|
[34] |
钟柏昌、 张禄. 2015. 我国中小学机器人教育的现状调查与分析[J]. 中国电化教育(7): 101-107.
|