诊断学理论与实践 ›› 2018, Vol. 17 ›› Issue (03): 266-271.doi: 10.16150/j.1671-2870.2018.03.007

• 论著 • 上一篇    下一篇

2014年至2017年上海地区新生儿血流感染病原菌分布及其耐药性分析

沈晓红, 陈慧芬, 张军, 叶剑波, 张贤华   

  1. 上海市第一妇婴保健院检验科,上海 201204
  • 收稿日期:2018-03-27 出版日期:2018-06-25 发布日期:2018-06-25
  • 通讯作者: 张贤华 E-mail: zhangxianhua@51mch.com

Distribution of pathogenic bacteria in neonatal bloodstream infection and analysis of drug resistance during 2014 to 2017

SHEN Xiaohong, CHEN Huifen, ZHANG Jun, YE Jianbo, ZHANG Xianhua   

  1. Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 201204, China
  • Received:2018-03-27 Online:2018-06-25 Published:2018-06-25

摘要: 目的:研究分析新生儿血流感染的病原菌分布及其耐药情况,为临床合理使用抗菌药物提供参考。方法:回顾分析上海市第一妇婴保健院(以下简称我院)2014年至2017年新生儿血培养阳性的菌株分布及其耐药情况。结果:2014年至2017年共计送检5 001份新生儿血培养样本,共检出新生儿血流感染153例,菌株155株,其中革兰阳性菌88株,以凝固酶阴性葡萄球菌(coagulase-negative Staphylococcus, CNS)为主(38株),其次为无乳链球菌(20株)、金黄色葡萄球菌(18株);革兰阴性菌57株,以大肠埃希菌(18株)和肺炎克雷伯菌(17株)为主;真菌10株。检出新生儿早发型血流感染54例,病原菌以无乳链球菌(27.27%)、大肠埃希菌(21.82%)为主,晚发型检出血流感染99例,病原菌以CNS(25.00%)、金黄色葡萄球菌(17.00%)、肺炎克雷伯菌(15.00%)为主。56株葡萄球菌中38株为耐甲氧西林葡萄球菌;无乳链球菌对克林霉素、红霉素和四环素的耐药率较高,分别为95.00%、85.00%、95.00%。大肠埃希菌和肺炎克雷伯菌对氨苄西林、哌拉西林、头孢唑林等多种β-内酰胺类和头孢类抗菌药物的耐药率较高,分别为88.57%、62.86%、62.86%,其中产超广谱β-内酰胺酶(extended-spectrum β-lactamases, ESBLs)菌株检出率为60.00%。结论:无乳链球菌和大肠埃希菌为新生儿早发型血流感染的主要病原菌,而CNS、金黄色葡萄球菌和肺炎克雷伯菌为新生儿晚发型血流感染的主要病原菌,晚发型血流感染病原菌的耐药率较高。

关键词: 新生儿血流感染, 血培养, 病原菌分布, 耐药率

Abstract: Objective: To study the distribution of pathogenic bacteria and drug resistance in neonatal bloodstream infection for providing a reference for the rational use of antimicrobialagents. Methods: The distribution of pathogenic bacterial strains isolated from blood culture specimens of neonates and its drug resistance at Shanghai First Maternity and Infant Hospital from 2014 to 2017 were analyzed retrospectively. Results: A total of 500 1 blood specimens collected from in-patient neonates from 2014-2017 were cultured.Among them, 153 cases of neonatal bloodstream infection were detected and 155 strains of bacteria were isolated. Of these strains there were 88 strains of Gram-positive bacteria,mainly composed of 38 strains of coagulase-negative Staphylococci (CNS), 20 strains of S.agalactiae, 18 strains of Staphylococcus aureus; 57 strains were Gram-negative bacteria strains, mainly composed of 18 strains of Escherichia coli,17 strains of Klebsiella pneumoniae; and 10 strains were fungi. Of these cases 54 were neonatal early-onset blood stream infection, the main pathogens were S.agalactiae (27.27%) and E. coli(21.82%); 99 cases were neonatal late-onset blood stream infection, the main pathogens were coagulase-negative Staphylococcus (25.00%), Staphylococcus aureus(17%) and K. pneumoniae (15%). Thirty eight of the 56 Staphylococci strains were identified as methicillin-resistant Staphylococcus. S.agalactiae had higher resistance to clindamycin, erythromycin and tetracycline, the resistance rates were 95.00%, 85.00 and 95.00%, respectively. E. coli and K. pneumoniae had higher resistance to ampicillin, piperacillin, and cephalosporin, the resistance rates were 88.57%, 62.86%, 62.86%, respectively, the detection rate of ESBLs-producing strains was 60%. Conclusions: S.agalactiae and E. coli are the main pathogens of neonatal early-onset bloodstream infection, while coagulase negative stapylococci, Staphylococcus aureus and K. pneumoniae are the main pathogens of neonatal late-onset bloodstream infection. Higher drug resistance is found in pathogens of neonatal late-onset bloodstream infection.

Key words: Neonatal bloodstream infection, Blood culture, Distribution of pathogenic bacteria, Drug resistance rate

中图分类号: