诊断学理论与实践 ›› 2018, Vol. 17 ›› Issue (03): 352-356.doi: 10.16150/j.1671-2870.2018.03.025
周鑫昀, 沈立松, 潘秀军
收稿日期:
2017-12-29
出版日期:
2018-06-25
发布日期:
2018-06-25
通讯作者:
潘秀军 E-mail: pan.xiujun@hotmail.com
Received:
2017-12-29
Online:
2018-06-25
Published:
2018-06-25
中图分类号:
周鑫昀, 沈立松, 潘秀军. 新型自身抗体及相关抗原在1型糖尿病诊治中的研究进展[J]. 诊断学理论与实践, 2018, 17(03): 352-356.
[1] Petruzelkova L, Ananieva-Jordanova R, Vcelakova J, et al.The dynamic changes of zinc transporter 8 autoantibodies in Czech children from the onset of Type 1 diabetes mellitus[J]. Diabet Med,2014,31(2):165-171. [2] Fabris M, Zago S, Liguori M, et al.Anti-zinc transporter protein 8 autoantibodies significantly improve the diagnostic approach to type 1 diabetes: an Italian multicentre study on paediatric patients[J]. Auto Immun Highlights,2015,6(1-2):17-22. [3] Dunseath G, Ananieva-Jordanova R, Coles R, et al.Bridging-type enzyme-linked immunoassay for zinc transporter 8 autoantibody measurements in adult patients with diabetes mellitus[J]. Clin Chim Acta,2015,447:90-95. [4] Huang G, Xiang Y, Pan L, et al.Zinc transporter 8 autoantibody (ZnT8A) could help differentiate latent autoimmune diabetes in adults (LADA) from phenotypic type 2 diabetes mellitus[J]. Diabetes Metab Res Rev,2013,29(5):363-368. [5] 黄干, 孙贵中, 杨琳, 等. 锌转运体8自身抗体和蛋白酪氨酸磷酸酶自身抗体对成人隐匿性自身免疫糖尿病患者胰岛功能的影响[J]. 中华医学杂志,2015,95(20):1563-1567. [6] Andersen MK, Härkönen T, Forsblom C, et al.Zinc transporter type 8 autoantibodies (ZnT8A): prevalence and phenotypic associations in latent autoimmune diabetes patients and patients with adult onset type 1 diabetes[J].Autoimmunity,2013,46(4):251-258. [7] Bhadada SK, Rastogi A, Agarwal A, et al.Comparative study of clinical features of patients with celiac disease & those with concurrent celiac disease & type 1 diabetes mellitus[J]. Indian J Med Res,2017,145(3):334-338. [8] Parkkola A, Härkönen T, Ryhänen SJ, et al.Transglutaminase antibodies and celiac disease in children with type 1 diabetes and in their family members[J]. Pediatr Diabetes,2018,19(2):305-313. [9] 邹婧, 马漠, 辛可嘉, 等. 组织型转谷氨酰胺酶抗体对1型糖尿病患者乳糜泻的诊断价值及相关临床特点分析[J]. 中华糖尿病杂志,2017,9(10):622-626. [10] 刘辰庚, 夏鸣, 孟双, 等. 碳酸酐酶Ⅲ自身抗体在1型糖尿病人中的测定[J]. 临床和实验医学杂志,2014,13(1):24-26. [11] Taniguchi T, Okazaki K, Okamoto M, et al.High prevalence of autoantibodies against carbonic anhydrase Ⅱ and lactoferrin in type 1 diabetes: concept of autoimmune exocrinopathy and endocrinopathy of the pancreas[J]. Pancreas,2003,27(1):26-30. [12] Taniguchi T, Okazaki K, Okamoto M, et al.Presence of autoantibodies to carbonic anhidrase Ⅱ and lactoferrin in type 1 diabetes: proposal of the concept of autoimmune exocrinopathy and endocrinopathy of the pancreas[J]. Dia-betes Care,2001,24(9):1695-1696. [13] Türk A, Mollamehmetoğlu S, Alver A, et al.The Relationship between Serum Carbonic Anhydrase I-II Autoantibody Levels and Diabetic Retinopathy in Type 1 Diabetes Patients[J]. Turk J Ophthalmol,2017,47(2):85-88. [14] Adamus G, Karren L.Autoimmunity against carbonic anhydrase Ⅱ affects retinal cell functions in autoimmune retinopathy[J]. J Autoimmun,2009,32(2):133-139. [15] Zimering MB, Zhang JH, Guarino PD, et al.Endothelial cell autoantibodies in predicting declining renal function, end-stage renal disease, or death in adult type 2 diabetic nephropathy[J]. Front Endocrinol (Lausanne),2014,5:128. [16] 赵秀玲. 糖尿病肾病患者抗内皮细胞抗体表达与炎性细胞因子水平关系分析[J]. 临床医学研究与实践,2017,2(18):17-18. [17] Goetze JP, Alehagen U, Flyvbjerg A, et al.Chromogranin A as a biomarker in cardiovascular disease[J]. Biomark Med,2014,8(1):133-140. [18] Portela-Gomes GM, Gayen JR, Grimelius L, et al.The importance of chromogranin A in the development and function of endocrine pancreas[J]. Regul Pept,2008,151(1-3):19-25. [19] 李艳玲, 陈晔, 彭丽, 等. 1型糖尿病免疫学研究进展[J]. 国际内分泌代谢杂志,2013,33(4):247-249. [20] Nikoopour E, Sandrock C, Huszarik K, et al.Cutting edge: vasostatin-1-derived peptide ChgA29-42 is an antigenic epitope of diabetogenic BDC2.5 T cells in nonobese diabetic mice[J]. J Immunol,2011,186(7):3831-3835. [21] Gottlieb PA, Delong T, Baker RL, et al.Chromogranin A is a T cell antigen in human type 1 diabetes[J]. J Autoimmun,2014,50:38-41. [22] Nikoopour E, Cheung R, Bellemore S, et al.Vasostatin-1 antigenic epitope mapping for induction of cellular and humoral immune responses to chromogranin A autoantigen in NOD mice[J]. Eur J Immunol,2014,44(4):1170-1180. [23] Westermark P, Andersson A, Westermark GT.Islet amyloid polypeptide, islet amyloid, and diabetes mellitus[J]. Physiol Rev,2011,91(3):795-826. [24] Tomita T.Islet amyloid polypeptide in pancreatic islets from type 1 diabetic subjects[J]. Islets,2011,3(4):166-174. [25] Baker RL, Delong T, Barbour G, et al.Cutting edge: CD4 T cells reactive to an islet amyloid polypeptide peptide accumulate in the pancreas and contribute to disease pathogenesis in nonobese diabetic mice[J]. J Immunol,2013,191(8):3990-3994. [26] Delong T, Baker RL, Reisdorph N, et al.Islet amyloid polypeptide is a target antigen for diabetogenic CD4+ T cells[J]. Diabetes,2011,60(9):2325-2330. [27] Gorus FK, Sodoyez JC, Pipeleers DG, et al.Detection of autoantibodies against islet amyloid polypeptide in human serum. Lack of association with type 1 (insulin-dependent) diabetes mellitus, or with conditions favouring amyloid deposition in islets. The Belgian Diabetes Regi-stry[J]. Diabetologia,1992,35(11):1080-1086. [28] Paulsson JF, Ludvigsson J, Carlsson A, et al.High plasma levels of islet amyloid polypeptide in young with newo-nset of type 1 diabetes mellitus[J]. PLoS One,2014,9(3):e93053. [29] Khoo C, Yang J, Weinrott SA, et al.Research resource: the pdx1 cistrome of pancreatic islets[J]. Mol Endocrinol,2012,26(3):521-533. [30] Wang RH, Xu X, Kim HS, et al.SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and β-cell formation[J]. Int J Biol Sci,2013,9(9):934-946. [31] Yuan Y, Hartland K, Boskovic Z, et al.A small-molecule inducer of PDX1 expression identified by high-throughput screening[J]. Chem Biol,2013,20(12):1513-1522. [32] Chun SY, Mack DL, Moorefield E, et al.Pdx1 and controlled culture conditions induced differentiation of human amniotic fluid-derived stem cells to insulin-produ-cing clusters[J]. J Tissue Eng Regen Med,2015,9(5):540-549. [33] Yu H, Sun Z, Cui J, et al.Epidermal growth factor and gastrin on PDX1 expression in experimental type 1 diabetic rats[J]. Am J Med Sci,2012,343(2):141-145. [34] Shternhall-Ron K, Quintana FJ, Perl S, et al.Ectopic PDX-1 expression in liver ameliorates type 1 diabetes[J]. J Autoimmun,2007,28(2-3):134-142. [35] Donelan W, Wang H, Li SW, et al.Novel detection of pancreatic and duodenal homeobox 1 autoantibodies (PAA) in human sera using luciferase immunoprecipitation systems (LIPS) assay[J]. Int J Clin Exp Pathol,2013, 6(6):1202-1210. |
[1] | 何亲羽, 王伟, 陈立芬, 张雪蕾, 董治亚. LHCGR基因突变致家族性男性性早熟2例报告及文献复习[J]. 诊断学理论与实践, 2022, 21(05): 598-605. |
[2] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[3] | 沈银忠. 《人类免疫缺陷病毒感染/艾滋病合并结核分枝杆菌感染诊治专家共识》解读[J]. 诊断学理论与实践, 2022, 21(04): 431-436. |
[4] | 施霞, 马鑫, 王珍燕, 张晖, 刘少军. 32例人类免疫缺陷病毒感染合并慢性肾病患者的临床病理特征及随访结果分析[J]. 诊断学理论与实践, 2022, 21(04): 437-443. |
[5] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[6] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[7] | 徐子真, 李擎天, 刘湘帆, 李莉, 李惠, 王也飞, 吴洁敏, 陈宁, 梁璆荔, 陈松立, 戴健敏, 宋珍, 丁磊. 实验诊断学在线课程的建立和实践[J]. 诊断学理论与实践, 2022, 21(04): 547-550. |
[8] | 李佳, 吕良敬. 靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(03): 299-303. |
[9] | 赵然, 詹维伟, 侯怡卿. 计算机辅助诊断系统辅助超声诊断甲状腺弥漫性病变合并结节良恶性的应用价值[J]. 诊断学理论与实践, 2022, 21(03): 390-394. |
[10] | 郭业兵, 郑金峰. 阴道壁胃肠道外间质瘤一例报道并文献复习[J]. 诊断学理论与实践, 2022, 21(03): 405-407. |
[11] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下骨质疏松症管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 133-135. |
[12] | 王刚, 陈生弟. 神经病学的诊断:起源、发展及挑战[J]. 诊断学理论与实践, 2022, 21(01): 1-4. |
[13] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[14] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[15] | 陈煦阳, 顾卫琼. 胰岛素自身抗体临床检测应用局限及对策研究进展[J]. 诊断学理论与实践, 2022, 21(01): 95-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||