诊断学理论与实践 ›› 2020, Vol. 19 ›› Issue (03): 209-213.doi: 10.16150/j.1671-2870.2020.03.001
• 专家论坛 • 下一篇
汪纯
收稿日期:
2020-04-15
出版日期:
2020-06-25
发布日期:
2020-06-25
基金资助:
Received:
2020-04-15
Online:
2020-06-25
Published:
2020-06-25
中图分类号:
汪纯. 原发性骨质疏松症发病及诊治的现状和展望[J]. 诊断学理论与实践, 2020, 19(03): 209-213.
[1] |
Xia WB, He SL, Xu L, et al. Rapidly increasing rates of hip fracture in Beijing, China[J]. J Bone Miner Res, 2012, 27(1): 125-129.
doi: 10.1002/jbmr.519 URL |
[2] | 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2017)[J]. 中华骨质疏松和骨矿盐疾病杂志 2017, 10(5):413-443. |
[3] |
Compston J. Treatments for osteoporosis-looking beyond the HORIZON[J]. N Engl J Med, 2007, 356(18):1878-1880.
doi: 10.1056/NEJMe078051 URL |
[4] |
Khosla S, Shane E. A crisis in the treatment of osteoporosis[J]. J Bone Miner Res, 2016, 31(8):1485-1487.
doi: 10.1002/jbmr.2888 URL |
[5] |
Abbasi J. Amid osteoporosis treatment crisis, experts suggest addressing patients' bisphosphonate concerns[J]. JAMA, 2018, 319(24):2464-2466.
doi: 10.1001/jama.2018.7097 URL |
[6] |
Khosla S, Cauley JA, Compston J, et al. Addressing the crisis in the treatment of osteoporosis: A path forward[J]. J Bone Miner Res, 2017, 32 (3):424-430.
doi: 10.1002/jbmr.3074 URL |
[7] |
Stoecker WV, Carson A, Nguyen VH, et al. Addressing the crisis in the treatment of osteoporosis: Better paths forward[J]. J Bone Miner Res, 2017, 32 (6):1386-1387.
doi: 10.1002/jbmr.3145 pmid: 28370446 |
[8] |
Binkley N, Blank RD, Leslie WD, et al. Osteoporosis in crisis: It's time to focus on fracture[J]. J Bone Miner Res, 2017, 32 (7):1391-1394.
doi: 10.1002/jbmr.3182 pmid: 28556236 |
[9] |
Lewiecki EM, Rochelle R, Bouchonville MF 2nd, et al. Leveraging scarce resources with bone health teleECHO to improve the care of osteoporosis[J]. J Endocrine Soc, 2017, 1(12): 1428-1434.
doi: 10.1210/js.2017-00361 URL |
[10] |
Cipriani C, Pepe J, Minisola S, et al. Adverse effects of media reports on the treatment of osteoporosis[J]. J Endocrinol Invest, 2018, 41(12):1359-1364.
doi: 10.1007/s40618-018-0898-9 URL |
[11] |
Dreinhöfer KE, Mitchell PJ, Bégué T, et al. A global call to action to improve the care of people with fragility fractures[J]. Injury, 2018, 49(8):1393-1397.
doi: S0020-1383(18)30325-5 pmid: 29983172 |
[12] |
Delmas PD. Markers of bone turnover for monitoring treatment of osteoporosis with antiresorptive drugs[J]. Osteoporos Int, 2000, 11 Suppl 6:S66-S76.
doi: 10.1007/s001980070007 pmid: 11193241 |
[13] |
Eastell R, Barton I, Hannon RA, et al. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate[J]. J Bone Miner Res, 2003, 18(6):1051-1056.
pmid: 12817758 |
[14] |
Bauer DC, Black DM, Garnero P, et al. Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the fracture intervention trial[J]. J Bone Miner Res, 2004, 19 (8):1250-1258.
doi: 10.1359/JBMR.040512 URL |
[15] |
Sarkar S, Reginster JY, Crans GG, et al. Relationship between changes in biochemical markers of bone turnover and BMD to predict vertebral fracture risk[J]. J Bone Miner Res, 2004, 19 (3): 394-401.
doi: 10.1359/JBMR.0301243 URL |
[16] |
Cummings SR, Karpf DB, Harris F, et al. Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs[J]. Am J Med, 2002, 112 (4): 281-289.
pmid: 11893367 |
[17] |
Sarkar S, Mitlak BH, Wong M, et al. Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy[J]. J Bone Miner Res, 2002, 17(1):1-10.
doi: 10.1359/jbmr.2002.17.1.1 URL |
[18] |
Chen P, Miller PD, Delmas PD, et al. Change in lumbar spine BMD and vertebral fracture risk reduction in teriparatide-treated postmenopausal women with osteoporosis[J]. J Bone Miner Res, 2006, 21(11):1785-1790.
doi: 10.1359/jbmr.060802 URL |
[19] |
Austin M, Yang YC, Vittinghoff E, et al. Relationship between bone mineral density changes with denosumab treatment and risk reduction for vertebral and nonvertebral fractures[J]. J Bone Miner Res 2012, 27(3):687-693.
doi: 10.1002/jbmr.1472 URL |
[20] |
Cosman F, de Beur SJ, LeBoff MS, et al. Clinician's guide to prevention and treatment of osteoporosis[J]. Osteoporos Int, 2014, 25(10):2359-2381.
doi: 10.1007/s00198-014-2794-2 pmid: 25182228 |
[21] | Camacho PM, Petak SM, Binkley N, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis-2016[J]. Endocr pract, 2016, 22 (Suppl 4):1-42. |
[22] |
Wang WJ, Fu WZ, He JW, et al. Association between SOST gene polymorphisms and response to alendronate treatment in postmenopausal Chinese women with low bone mineral density[J]. Pharmacogenomics J, 2019, 19(5):490-498.
doi: 10.1038/s41397-018-0059-8 pmid: 30287911 |
[23] |
Zheng H, Wang C, He JW, et al. OPG, RANKL,and RANK gene polymorphisms and the bone mineral density response to alendronate therapy in postmenopausal Chinese women with osteoporosis or osteopenia[J]. Pharmacogenet Genomics, 2016, 26(1):12-19.
doi: 10.1097/FPC.0000000000000181 URL |
[24] |
Wang C, Zheng H, He JW, et al. Genetic polymorphisms in the mevalonate pathway affect the therapeutic response to alendronate treatment in postmenopausal Chinese women with low bone mineral density[J]. Pharmacogenomics J, 2015, 15(2):158-164.
doi: 10.1038/tpj.2014.52 pmid: 25223561 |
[25] |
Zhou PR, Xu XJ, Zhang ZL, et al. SOST polymorphisms and response to alendronate treatment in postmenopausal Chinese women with osteoporosis[J]. Pharmacogenomics, 2015, 16(10):1077-1088.
doi: 10.2217/pgs.15.76 URL |
[26] |
Zhou PR, Liu HJ, Liao EY, et al. LRP5 polymorphisms and response to alendronate treatment in Chinese postmenopausal women with osteoporosis[J]. Pharmacogenomics, 2014, 15(6):821-831.
doi: 10.2217/pgs.14.12 pmid: 24897288 |
[27] | Gao C, Xu Y, Li L, et al. Prevalence of osteoporotic vertebral fracture among community-dwelling elderly in Shanghai[J]. Chin Med J (Engl), 2019, 132(14):1749-1751. |
[28] |
Shao C, Wang YW, He JW, et al. Genetic variants in the PLS3 gene are associated with osteoporotic fractures in postmenopausal Chinese women[J]. Acta Pharmacol Sin, 2019, 40(9):1212-1218.
doi: 10.1038/s41401-019-0219-7 URL |
[29] |
Zhang H, He JW, Wang C, et al. Associations of polymorphisms in the SOST gene and bone mineral density in postmenopausal Chinese women[J]. Osteoporos Int, 2014, 25(12):2797-2803.
doi: 10.1007/s00198-014-2832-0 pmid: 25103216 |
[30] |
Zhao F, Gao LH, Li SS, et al. Association between SNPs and haplotypes in the METTL21C gene and peak bone mineral density and body composition in Chinese male nuclear families[J]. J Bone Miner Metab, 2017, 35(4):437-447.
doi: 10.1007/s00774-016-0774-7 pmid: 27628047 |
[31] |
Li SS, Gao LH, Zhang XY, et al. Genetically low vitamin D levels, bone mineral density, and bone metabolism markers: A mendelian randomisation study[J]. Sci Rep, 2016, 6:33202.
doi: 10.1038/srep33202 URL |
[32] |
Gao C, Qiao J, Li SS, et al. The levels of bone turnover markers 25(OH)D and PTH and their relationship with bone mineral density in postmenopausal women in a suburban district in China[J]. Osteoporos Int, 2017, 28(1):211-218.
doi: 10.1007/s00198-016-3692-6 pmid: 27468899 |
[33] |
Zhang Z, He JW, Fu WZ, et al. An analysis of the association between the vitamin D pathway and serum 25-hydroxyvitamin D levels in a healthy Chinese population[J]. J Bone Miner Res, 2013, 28(8):1784-1792.
doi: 10.1002/jbmr.1926 pmid: 23505139 |
[34] |
Markham A. Romosozumab: first global approval[J]. Drugs, 2019, 79(4):471-476.
doi: 10.1007/s40265-019-01072-6 URL |
[35] |
McClung MR. Romosozumab for the treatment of osteoporosis[J]. Osteoporos Sarcopenia, 2018, 4(1):11-15.
doi: 10.1016/j.afos.2018.03.002 URL |
[1] | 何亲羽, 王伟, 陈立芬, 张雪蕾, 董治亚. LHCGR基因突变致家族性男性性早熟2例报告及文献复习[J]. 诊断学理论与实践, 2022, 21(05): 598-605. |
[2] | 陈志敏, 何浩岚. 艾滋病合并马尔尼菲篮状菌病的诊治现状[J]. 诊断学理论与实践, 2022, 21(04): 425-430. |
[3] | 沈银忠. 《人类免疫缺陷病毒感染/艾滋病合并结核分枝杆菌感染诊治专家共识》解读[J]. 诊断学理论与实践, 2022, 21(04): 431-436. |
[4] | 施霞, 马鑫, 王珍燕, 张晖, 刘少军. 32例人类免疫缺陷病毒感染合并慢性肾病患者的临床病理特征及随访结果分析[J]. 诊断学理论与实践, 2022, 21(04): 437-443. |
[5] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[6] | 何新, 陈慧, 冯炜炜. 机器学习算法在辅助超声诊断附件肿块良恶性中的应用研究进展[J]. 诊断学理论与实践, 2022, 21(04): 541-546. |
[7] | 徐子真, 李擎天, 刘湘帆, 李莉, 李惠, 王也飞, 吴洁敏, 陈宁, 梁璆荔, 陈松立, 戴健敏, 宋珍, 丁磊. 实验诊断学在线课程的建立和实践[J]. 诊断学理论与实践, 2022, 21(04): 547-550. |
[8] | 李佳, 吕良敬. 靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(03): 299-303. |
[9] | 赵然, 詹维伟, 侯怡卿. 计算机辅助诊断系统辅助超声诊断甲状腺弥漫性病变合并结节良恶性的应用价值[J]. 诊断学理论与实践, 2022, 21(03): 390-394. |
[10] | 郭业兵, 郑金峰. 阴道壁胃肠道外间质瘤一例报道并文献复习[J]. 诊断学理论与实践, 2022, 21(03): 405-407. |
[11] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下骨质疏松症管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 133-135. |
[12] | 王刚, 陈生弟. 神经病学的诊断:起源、发展及挑战[J]. 诊断学理论与实践, 2022, 21(01): 1-4. |
[13] | 唐静仪, 余群, 刘军. 结合人工智能的结构影像分析对阿尔茨海默病的早期预测及精准诊断研究进展[J]. 诊断学理论与实践, 2022, 21(01): 12-17. |
[14] | 魏文石. 直面我国阿尔茨海默病诊治的挑战——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 5-7. |
[15] | 王蔚, 王小钦. 缺铁性贫血的病因诊断[J]. 诊断学理论与实践, 2021, 20(06): 529-532. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||