诊断学理论与实践 ›› 2023, Vol. 22 ›› Issue (01): 21-30.doi: 10.16150/j.1671-2870.2023.01.004
收稿日期:
2023-03-06
出版日期:
2023-02-25
发布日期:
2023-07-06
通讯作者:
唐神结
E-mail:tangsj1106@vip.sina.com
基金资助:
LIANG Chen, YU Jiajia, TANG Shenjie()
Received:
2023-03-06
Online:
2023-02-25
Published:
2023-07-06
Contact:
TANG Shenjie
E-mail:tangsj1106@vip.sina.com
摘要:
世界卫生组织(World Health Organization, WHO)发布了新的《全球结核病报告2022》(以下简称报告),报告指出新型冠状病毒感染加重了结核病的负担,严重影响了全球结核病控制的进程。2021年,WHO共批准6项用于结核病诊断和抗结核药物耐药性检测的分子诊断技术,推荐3种用于筛查结核病的基于结核分枝杆菌抗原的新型皮肤试验。为减轻患者和医疗系统的负担,WHO推荐了“4个月方案”治疗药物敏感结核病和4套耐多药和利福平耐药结核病(multidrug resistant/rifampicin resistant-tuberculosis,MDR/RR-TB)短程方案,治疗耐药结核病。目前有26种抗结核药物处于临床试验阶段,至少有22项临床试验在开展治疗结核感染的药物和方案的评估。我国的结核病疫情仍十分严重,2021年,我国结核病新发患者数在30个结核病高负担国家中排第3位。2021年,全国共报告肺结核病例639 548例,死亡1 763例,报告发病率为45.37/10万,报告死亡率为0.13/10万,MDR/RR-TB患者例数居全球第4位。WHO推荐治疗耐药性结核病方案是否适合我国,尚需验证。
中图分类号:
梁晨, 于佳佳, 唐神结. 世界卫生组织《全球结核病报告2022》解读[J]. 诊断学理论与实践, 2023, 22(01): 21-30.
LIANG Chen, YU Jiajia, TANG Shenjie. Interpretation of the Global Tuberculosis Report 2022 by World Health Organization[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(01): 21-30.
表2
2018年首次联合国结核病高级别会议制定的全球目标[1]
指标 | 目标 |
---|---|
2018年至2022年(5年内)接受治疗的结核病患者例数 | 4 000万例患者(包括350万儿童),其中有150万耐药结核病病例(包括115 000例耐药结核病儿童) |
2018年至2022年(5年内)接受结核病预防性治疗者例数 | 至少3 000万人,包括400万名与结核病患者有家庭接触的5岁以下的儿童;2 000万名与结核病患者有家庭接触的老年人;600万例HIV感染者 |
为普及结核病的高质量预防、诊断、治疗和护理提供年度资金 | 截至2022年,每年至少130亿美元 |
结核病研究的年度资助 | 2018年至2022年这5年内,每年20亿美元 |
表3
2021年全球结核发病估算的病例数居前8位的国家
国家 | 估算发病率/100 000 (95% CI) | 估算发病人数 (×1 000 000) (95% CI) | 全球 份额 |
---|---|---|---|
印度 | 210(178~244) | 3(2.500~3.400) | 28.0% |
印度尼西亚 | 354(318~391) | 0.969(0.872~1.100) | 9.2% |
中国 | 55(47~63) | 0.780(0.665~0.905) | 7.4% |
菲律宾 | 650(352~1 000) | 0.741(0.401~1.200) | 7.0% |
巴基斯坦 | 264(192~347) | 0.611(0.445~0.803) | 5.8% |
尼日利亚 | 219(143~311) | 0.476(0.305~0.664) | 4.4% |
孟加拉国 | 221(161~291) | 0.375(0.273~0.493) | 3.6% |
刚果 | 370(231~542) | 0.022(0.013~0.032) | 2.9% |
[1] | World Health Organization. Global tuberculosis report 2022[R/OL]. Geneva: World Health Organization, 2022. https://www.who.int/teams/global-tuberculosis-programme/TB-reports/global-tuberculosis-report-2022. |
[2] |
DHEDA K, PERUMAL T, MOULTRIE H, et al. The intersecting pandemics of tuberculosis and COVID-19: population-level and patient-level impact, clinical presentation, and corrective interventions[J]. Lancet Respir Med, 2022, 10(6):603-622.
doi: 10.1016/S2213-2600(22)00092-3 pmid: 35338841 |
[3] | World Health Organization. Impact of the COVID-19 pandemic on TB detection and mortality in 2020[R/OL]. Geneva: World Health Organization, 2021. https://www.who.int/publications/m/item/impact-of-the-covid-19-pandemic-on-tb-detection-and-mortality-in-2020. |
[4] | 梁晨, 唐神结. 临床结核病病原体分子生物学诊断年度进展2022[J]. 中华结核和呼吸杂志, 2023, 46(2):176-182. |
LIANG C, TANG S J. Annual progress on molecular biological diagnosis of tuberculosis 2022[J]. Chin J Tuberc Respir Dis, 2023, 46(2):176-182. | |
[5] | WHO consolidated guidelines on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detection[R/OL]. Geneva: World Health Organization, 2021. https://www.ncbi.nlm.nih.gov/books/NBK572344/. |
[6] | WHO consolidated guidelines on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detection[R/OL]. Geneva: World Health Organization, 2021. https://www.ncbi.nlm.nih.gov/books/NBK572344/. |
[7] |
BISWAS S, UDDIN M K M, PAUL K K, et al. Xpert MTB/RIF Ultra assay for the detection of Mycobacterium tuberculosis in people with negative conventional Xpert MTB/RIF but chest imaging suggestive of tuberculosis in Dhaka, Bangladesh[J]. Int J Infect Dis, 2022, 114:244-251.
doi: 10.1016/j.ijid.2021.11.010 URL |
[8] |
PENG X, LIAO Q, FANG M, et al. Detection of pulmonary tuberculosis in children using the Xpert MTB/RIF Ultra assay on sputum: a multicenter study[J]. Eur J Clin Microbiol Infect Dis, 2022, 41(2):235-243.
doi: 10.1007/s10096-021-04340-0 |
[9] |
SIGNORINO C, VOTTO M, DE FILIPPO M, et al. Diagnostic accuracy of Xpert ultra for childhood tuberculosis: A preliminary systematic review and meta-analysis[J]. Pediatr Allergy Immunol, 2022, 33(Suppl 27):80-82.
doi: 10.1111/pai.v33.s27 URL |
[10] |
SUN L, LIU Y, FANG M, et al. Use of Xpert MTB/RIF Ultra assay on stool and gastric aspirate samples to diagnose pulmonary tuberculosis in children in a high-tuberculosis-burden but resource-limited area of China[J]. Int J Infect Dis, 2022, 114:236-243.
doi: 10.1016/j.ijid.2021.11.012 URL |
[11] |
BOLOKO L, SCHUTZ C, SIBIYA N, et al. Xpert Ultra testing of blood in severe HIV-associated tuberculosis to detect and measure Mycobacterium tuberculosis blood stream infection: a diagnostic and disease biomarker cohort study[J]. Lancet Microbe, 2022, 3(7):e521-e532.
doi: 10.1016/S2666-5247(22)00062-3 URL |
[12] |
PENN-NICHOLSON A, GOMATHI S N, UGARTE-GIL C, et al. A prospective multicentre diagnostic accuracy study for the Truenat tuberculosis assays[J]. Eur Respir J, 2021, 58(5):2100526.
doi: 10.1183/13993003.00526-2021 URL |
[13] |
NGANGUE Y R, MBULI C, NEH A, et al. Diagnostic Accuracy of the Truenat MTB Plus Assay and Comparison with the Xpert MTB/RIF Assay to Detect Tuberculosis among Hospital Outpatients in Cameroon[J]. J Clin Microbiol, 2022, 60(8):e0015522.
doi: 10.1128/jcm.00155-22 URL |
[14] |
MEAZA A, TESFAYE E, MOHAMED Z, et al. Diagnostic accuracy of Truenat Tuberculosis and Rifampicin-Resistance assays in Addis Ababa, Ethiopia[J]. PLoS One, 2021, 16(12):e0261084.
doi: 10.1371/journal.pone.0261084 URL |
[15] | ENGEL N, OCHODO E A, KARANJA P W, et al. Rapid molecular tests for tuberculosis and tuberculosis drug resistance: a qualitative evidence synthesis of recipient and provider views[J]. Cochrane Database Syst Rev, 2022, 4(4):CD014877. |
[16] |
SHARMA K, SHARMA M, SHARMA V, et al. Evalua-ting diagnostic performance of Truenat MTB Plus for gastrointestinal tuberculosis[J]. J Gastroenterol Hepatol, 2022, 37(8):1571-1578.
doi: 10.1111/jgh.v37.8 URL |
[17] |
HUANG Z, LACOURSE S M, KAY A W, et al. CRISPR detection of circulating cell-free Mycobacterium tuberculosis DNA in adults and children, including children with HIV: a molecular diagnostics study[J]. Lancet Microbe, 2022, 3(7):e482-e492.
doi: 10.1016/S2666-5247(22)00087-8 URL |
[18] |
ORESKOVIC A, WAALKES A, HOLMES E A, et al. Characterizing the molecular composition and diagnostic potential of Mycobacterium tuberculosis urinary cell-free DNA using next-generation sequencing[J]. Int J Infect Dis, 2021, 112:330-337.
doi: 10.1016/j.ijid.2021.09.042 URL |
[19] |
ZHENG W, QUAN B, GAO G, et al. Combination of Circulating Cell-Free DNA and Positron Emission Tomography to Distinguish Non-Small Cell Lung Cancer from Tuberculosis[J]. Lab Med, 2023, 54(2):130-141.
doi: 10.1093/labmed/lmac085 URL |
[20] |
DASS M, AITTAN S, MUTHUMOHAN R, et al. Utility of cell-free transrenal DNA for the diagnosis of Tuberculous Meningitis: A proof-of-concept study[J]. Tuberculosis (Edinb), 2022, 135:102213.
doi: 10.1016/j.tube.2022.102213 URL |
[21] | PARK J H, KOO B, KIM M J, et al. Utility of plasma cell-free DNA detection using homobifunctional imidoesters using a microfluidic system for diagnosing active tuberculosis[J]. Infect Dis (Lond), 2022, 54(1):46-52. |
[22] |
WU X, TAN G, YANG J, et al. Prediction of Mycobacterium tuberculosis drug resistance by nucleotide MALDI-TOF-MS[J]. Int J Infect Dis, 2022, 121:47-54.
doi: 10.1016/j.ijid.2022.04.061 pmid: 35523300 |
[23] |
SHI J, HE G, NING H, et al. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the detection of drug resistance of Mycobacterium tuberculosis in re-treated patients[J]. Tuberculosis (Edinb), 2022, 135:102209.
doi: 10.1016/j.tube.2022.102209 URL |
[24] | KHAN F A, MAJIDULLA A, TAVAZIVA G, et al. Chest x-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease[J]. Lancet Digit Health, 2020, 2(11):e573-e581. |
[25] |
TAVAZIVA G, HARRIS M, ABIDI S K, et al. Chest X-ray Analysis With Deep Learning-Based Software as a Triage Test for Pulmonary Tuberculosis: An Individual Patient Data Meta-Analysis of Diagnostic Accuracy[J]. Clin Infect Dis, 2022, 74(8):1390-1400.
doi: 10.1093/cid/ciab639 URL |
[26] |
TAVAZIVA G, MAJIDULLA A, NAZISH A, et al. Diagnostic accuracy of a commercially available, deep lear-ning-based chest X-ray interpretation software for detec-ting culture-confirmed pulmonary tuberculosis[J]. Int J Infect Dis, 2022, 122:15-20.
doi: 10.1016/j.ijid.2022.05.037 URL |
[27] | WHO. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-susceptible tuberculosis treatment, 2022 update[R/OL]. Geneva: World Health Organization, 2022. https://www.ncbi.nlm.nih.gov/books/NBK581329/. |
[28] |
DORMAN S E, NAHID P, KURBATOVA E V, et al. Four-Month Rifapentine Regimens with or without Moxifloxacin for Tuberculosis[J]. N Engl J Med, 2021, 384(18):1705-1718.
doi: 10.1056/NEJMoa2033400 URL |
[29] |
TURKOVA A, WILLS GH, WOBUDEYA E, et al. Shorter Treatment for Nonsevere Tuberculosis in African and Indian Children[J]. N Engl J Med, 2022, 386(10):911-922.
doi: 10.1056/NEJMoa2104535 URL |
[30] | World Health Organization. Rapid communication: key changes to the treatment of drug-resistant tuberculosis[M]. Geneva: World Health Organization, 2022. |
[31] | WHO. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment, 2022 update[R/OL]. Geneva: WHO, 2022. https://www.ncbi.nlm.nih.gov/books/NBK558570/. |
[32] | 黄小艺, 刘志伟. 妇幼保健院新生儿早发型血流感染分析[J]. 中华医院感染学杂志, 2012, 22(11):2329-2332. |
HUANG X Y, LIU Z W. Analysis of neonatal early-onset blood stream infections in maternal and children's hospital[J]. Chin J Nosocomiol, 2012, 22(11):2329-2332. | |
[33] |
KIM J S, KIM Y H, LEE S H, et al. Early Bactericidal Activity of Delpazolid (LCB01-0371) in Patients with Pulmonary Tuberculosis[J]. Antimicrob Agents Chemother, 2022, 66(2):e0168421.
doi: 10.1128/aac.01684-21 URL |
[34] |
BRUINENBERG P, NEDELMAN J, YANG T J, et al. Single Ascending-Dose Study To Evaluate the Safety, To-lerability, and Pharmacokinetics of Sutezolid in Healthy Adult Subjects[J]. Antimicrob Agents Chemother, 2022, 66(4):e0210821.
doi: 10.1128/aac.02108-21 URL |
[35] |
KIM J, CHOI J, KANG H, et al. Safety, Tolerability, and Pharmacokinetics of Telacebec (Q203), a New Antituberculosis Agent, in Healthy Subjects[J]. Antimicrob Agents Chemother, 2022, 66(1):e0143621.
doi: 10.1128/AAC.01436-21 URL |
[36] |
NASIRI M J, ZANGIABADIAN M, ARABPOUR E, et al. Delamanid-containing regimens and multidrug-resistant tuberculosis: A systematic review and meta-analysis[J]. Int J Infect Dis, 2022, 124(Suppl 1):S90-S103.
doi: 10.1016/j.ijid.2022.02.043 URL |
[37] |
GARCIA-PRATS A J, FRIAS M, VAN DER LAAN L, et al. Delamanid Added to an Optimized Background Regimen in Children with Multidrug-Resistant Tuberculosis: Results of a Phase I/II Clinical Trial[J]. Antimicrob Agents Chemother, 2022, 66(5):e0214421.
doi: 10.1128/aac.02144-21 URL |
[38] |
GILS T, LYNEN L, DE JONG B C, et al. Pretomanid for tuberculosis: a systematic review[J]. Clin Microbiol Infect, 2022, 28(1):31-42.
doi: 10.1016/j.cmi.2021.08.007 URL |
[39] |
NDJEKA N, CAMPBELL J R, MEINTJES G, et al. Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study[J]. Lancet Infect Dis, 2022, 22(7):1042-1051.
doi: 10.1016/S1473-3099(21)00811-2 pmid: 35512718 |
[40] |
ESMAIL A, OELOFSE S, LOMBARD C, et al. An All-Oral 6-Month Regimen for Multidrug-Resistant Tuberculosis: A Multicenter, Randomized Controlled Clinical Trial (the NExT Study)[J]. Am J Respir Crit Care Med, 2022, 205(10):1214-1227.
doi: 10.1164/rccm.202107-1779OC URL |
[41] |
DECROO T, AUNG K J M, HOSSAIN M A, et al. Bedaquiline can act as core drug in a standardised treatment regimen for fluoroquinolone-resistant rifampicin-resistant tuberculosis[J]. Eur Respir J, 2022, 59(3):2102124.
doi: 10.1183/13993003.02124-2021 URL |
[42] |
HUERGA H, KHAN U, BASTARD M, et al. Safety and Effectiveness Outcomes From a 14-Country Cohort of Patients With Multi-Drug Resistant Tuberculosis Treated Concomitantly With Bedaquiline, Delamanid, and Other Second-Line Drugs[J]. Clin Infect Dis, 2022, 75(8):1307-1314.
doi: 10.1093/cid/ciac176 URL |
[43] |
KHAN P Y, FRANKE M F, HEWISON C, et al. All-oral longer regimens are effective for the management of multidrug-resistant tuberculosis in high-burden settings[J]. Eur Respir J, 2022, 59(1):2004345.
doi: 10.1183/13993003.04345-2020 URL |
[44] |
HEWISON C, KHAN U, BASTARD M, et al. Safety of Treatment Regimens Containing Bedaquiline and Delamanid in the endTB Cohort[J]. Clin Infect Dis, 2022, 75(6):1006-1013.
doi: 10.1093/cid/ciac019 pmid: 35028659 |
[45] |
MOHR-HOLLAND E, DANIELS J, REUTER A, et al. Early mortality during rifampicin-resistant TB treatment[J]. Int J Tuberc Lung Dis, 2022, 26(2):150-157.
doi: 10.5588/ijtld.21.0494 URL |
[46] |
MOK J, LEE M, KIM D K, et al. 9 months of delamanid, linezolid, levofloxacin, and pyrazinamide versus conventional therapy for treatment of fluoroquinolone-sensitive multidrug-resistant tuberculosis (MDR-END): a multicentre, randomised, open-label phase 2/3 non-inferiority trial in South Korea[J]. Lancet, 2022, 400(10362):1522-1530.
doi: 10.1016/S0140-6736(22)01883-9 pmid: 36522208 |
[47] | NYANG'WA B T, BERRY C, KAZOUNIS E, et al. A 24-Week, All-Oral Regimen for Rifampin-Resistant Tuberculosis[J]. N N Engl J Med, 2022, 387(25):2331-2343. |
[48] | 中华人民共和国国家卫生健康委员会疾病预防控制局. 全国法定传染病疫情概况[R/OL]. (2022-02-01)[2022-04-22]. http://www.nhc.gov.cn/jkj/ne_index.shtml. |
Disease Prevention and Control Bureau of the National Health Commission of the People's Republic of China. Overview of the national epidemic of statutory infectious diseases[R/OL](2022-04-22)[2023-02-01]. http://www.nhc.gov.cn/jkj/ne_index.shtml. | |
[49] | World Health Organization. Tuberculosis profile: China[R/OL]. 2021-10-27[2022-10-27]. https://worldhealthorg.shinyapps.io/tb_profiles/?_inputs_&entity_type=%22country%22&lan=%22EN%22&iso2=%22CN%22. |
[1] | 史玉玲, 陈文娟. 银屑病共病的现状及诊治[J]. 诊断学理论与实践, 2023, 22(03): 221-229. |
[2] | 唐春花, 郭露, 李琼, 张莉莉. 2022年全球卒中数据报告解读[J]. 诊断学理论与实践, 2023, 22(03): 238-246. |
[3] | 王泽洲, 郑莹. 1990年至2020年间全球及我国肺癌的发病流行趋势及防控措施[J]. 诊断学理论与实践, 2023, 22(01): 1-7. |
[4] | 鲍萍萍, 吴春晓, 顾凯, 庞怡, 王春芳, 施亮, 向詠梅, 龚杨明, 窦剑明, 吴梦吟, 付晨, 施燕. 上海市2016年胃癌发病特征及2002年至2016年胃癌发病趋势分析[J]. 诊断学理论与实践, 2022, 21(04): 462-469. |
[5] | 陈宏, 沈银忠. 人类免疫缺陷病毒感染/艾滋病合并结核病的诊治进展[J]. 诊断学理论与实践, 2022, 21(04): 530-534. |
[6] | 付朝伟. 阿尔茨海默病重在预防——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 8-11. |
[7] | 郭静, 沈银忠. HIV感染/AIDS合并结核病的临床及免疫学特点研究进展[J]. 诊断学理论与实践, 2021, 20(04): 401-406. |
[8] | 黄丹, 陈崑. 银屑病相关流行病学调查进展[J]. 诊断学理论与实践, 2021, 20(01): 48-52. |
[9] | 王娟, 李佳. 2017年至2018年上海地区男性尖锐湿疣患者人乳头瘤病毒感染的流行病学分析[J]. 诊断学理论与实践, 2020, 19(06): 572-576. |
[10] | 汪峰, 罗颖, 孙自镛. 结核病的实验诊断技术应用及流程规范化[J]. 诊断学理论与实践, 2019, 18(2): 121-126. |
[11] | 刘珊珊, 牛静雅, 王天歌, 李勉, 赵志云, 徐瑜, 陆洁莉, 徐敏, 毕宇芳, 张迪. 上海淞南社区2型糖尿病患者合并其他心血管代谢异常的现况流行病学调查[J]. 诊断学理论与实践, 2019, 18(03): 323-328. |
[12] | 王芳, 林见敏, 陈辉凤, 王金金, 张建林, 邓燕燕, 龚倩. 上海青浦2015年至2016年2 241例呼吸道感染患者9项常见病原体检出情况分析[J]. 诊断学理论与实践, 2018, 17(02): 207-210. |
[13] | 鲍萍萍, 吴春晓, 张敏璐, 顾凯, 向詠梅, 彭鹏, 龚杨明, 施亮, 邹珍. 上海市白血病主要亚型发病特征和趋势分析[J]. 诊断学理论与实践, 2017, 16(05): 484-491. |
[14] | 胡以松,. 从流行病学的角度看待我国的帕金森病筛查[J]. 诊断学理论与实践, 2016, 15(02): 118-121. |
[15] | 沙巍,. 支气管镜介入技术在结核病诊断中的应用[J]. 诊断学理论与实践, 2015, 14(05): 407-411. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||