诊断学理论与实践 ›› 2023, Vol. 22 ›› Issue (05): 494-500.doi: 10.16150/j.1671-2870.2023.05.012
收稿日期:
2023-01-02
出版日期:
2023-10-25
发布日期:
2024-03-15
通讯作者:
常春康 E-mail: Received:
2023-01-02
Online:
2023-10-25
Published:
2024-03-15
摘要:
骨髓增生异常综合征(myelodysplastic syndrome,MDS)是血液系统中较为常见的一组髓系恶性克隆性疾病。不同分型的MDS患者,其临床表现及自然病程各异,加上历史上不同分型系统及版本的迭代,对其诊断、分型及治疗方案选择造成了一定困扰。随着分子生物学技术的进步,来那度胺、罗特西普、维奈克拉等药物的使用,近年来MDS分型标准与预后积分系统在不断完善细化。在2016年WHO分型标准中,首次引入了分子相关的分型标准(SF3B1),并对5q-进行了再定义,强调了驱动突变的概念。2022年WHO分型标准则在原有基础上更加突出了分子生物学特征,同时关于SF3B1、5q-的亚型也被保留在2022年的WHO分型标准中,并新增了新的分子相关分型亚型(bi-TP53)。新提出的MDS分子国际预后评分系统(the Molecular International Prognostic Scoring System,IPSS-M)则在2012年提出的MDS修订版国际预后评分系统(the Revised International Prognostic Scoring System,IPSS-R)的基础上,引入了分子突变作为新的积分标准,并结合了既有的形态学和细胞遗传学特征,使得MDS患者的危险因素分层更加精准和个体化。随着分子靶向药物的不断推出和检验技术的提升,IPSS-M必将不断更新,笔者对近些年的MDS分型标准以及预后分层系统的进展和临床意义进行总结。
中图分类号:
吴多尔, 常春康. 骨髓增生异常综合征分型与预后分层研究进展[J]. 诊断学理论与实践, 2023, 22(05): 494-500.
WU Duoer, CHANG Chunkang. Research progress on classification and prognostic stratification of myelodysplastic syndrome[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(05): 494-500.
表1
MDS(WHO 2022)分型
亚型 | 原始细胞 | 细胞遗传学 | 突变基因 |
---|---|---|---|
具有明确遗传倾向的MDS亚型 | |||
MDS-5q | 骨髓原始细胞<5%,外周血原始细胞<2% | 孤立5q-或者合并一种非-7/7q-异常 | |
MDS-SF3B1* | 骨髓原始细胞<5%,外周血原始细胞<2% | 没有5q-,单倍体7或复杂核型 | SF3B1 |
MDS-biTP53 | 骨髓原始细胞<20%,外周血原始细胞<20% | 通常是复杂核型 | 2个或更多的TP53基因突变,或一个TP53拷贝数丢失或者拷贝中性杂合性丢失的突变 |
具有明确形态学异常的MDS亚型 | |||
MDS-LB | 骨髓原始细胞<5%,外周血原始细胞<2% | ||
MDS-h# | 骨髓原始细胞<5%,外周血原始细胞<2% | ||
MDS-IB | |||
MDS-IB1 | 骨髓原始细胞5%~9%或外周血原始细胞2%~4% | ||
MDS-IB2 | 骨髓原始细胞10%~19%或外周血原始细胞5%~19%,或可见Auer小体 | ||
MDS-f | 骨髓原始细胞5%~19%,外周血原始细胞2%~19% |
表2
MDS(ICC)分型
分型 | 发育不良谱系 | BM和PB原始细胞百分比 | 细胞遗传学 | 分子突变 |
---|---|---|---|---|
MDS-SF3B1 | 通常≥1 | <5% BM;<2% PB | 任何,除了孤立的del(5q)、-7/del(7q)、abn3q26.2或复杂核型 | SF3B1(≥ 10% VAF),无多打击TP53或RUNX1 |
MDS-5q(del) | 通常≥1 | <5% BM;<2% PB | del(5q),除了-7/del(7q)外最多增加1个 | 任何,除了多打击TP53 |
MDS、NOS无异型增生 | 0 | <5% BM;<2% PB | -7/del(7q)或复数 | 任何,多打击TP53或SF3B1(≥ 10% VAF) 除外 |
MDS、NOS伴单系异型增生 | 1 | <5% BM;<2% PB | 任何,除了不满足MDS-del(5q)的标准 | 任意,排除多打击TP53;不符合 MDS- SF3B1的标准 |
MDS、NOS伴多系异型增生 | ≥2 | <5% BM;<2% PB | 任何,除了不满足MDS-del(5q)的标准 | 任何,排除多打击TP53突变且不符合 MDS- SF3B1的标准 |
MDS-EB | 通常≥1 | 5%~9% BM;2%~9% PB | 任何 | 任何,排除多打击TP53突变 |
MDS/AML | 通常≥1 | 10%~19% BM;10%~19% PB | 任何,但要排除AML定义 | 任何,除了NPM1、 bZIP CEBPA或TP53 |
具有TP53突变的MDS | 任何 | 0~9% BM且0~9% PB | 多打击TP53突变或TP53突变 (VAF > 10%) 并通常伴有 17p 丢失的复杂核型 | |
具有TP53突变的MDS/AML | 任何 | 10%~19% BM或10%~19% PB | 任何体细胞TP53突变 (VAF > 10%) |
表4
IPSS-M预后因素分类
分类 | 预后因素 | 附加说明 |
---|---|---|
临床因素 | 骨髓原始细胞比例 | 连续观察的指标 |
血小板计数 | 连续观察的指标 | |
血红蛋白 | 连续观察的指标 | |
IPSS-R细胞遗传学风险类别 | 低危 | 积分与IPSSR相同 |
中危 | 积分与IPSSR相同 | |
高危 | 积分与IPSSR相同 | |
基因突变 | 16个预后基因突变 | 每个个体变量权重 |
15个其他基因突变 | 该组突变的数量特征 | |
16 个预后基因:TP53multihit、MLLPTD、FLT3ITD+TKD、SF3B15q、NPM1、RUNX1、NRAS、ETV6、IDH2、CBL、EZH2、U2AF1、SRSF2、DNMT3A、ASXL1、KRAS、SF3B1a | ||
15种其他基因突变:BCOR、BCORL1、CEBPA、ETNK1、GATA2、GNB1、IDH1、NF1、PHF6、PPM1D、PRPF8、PTPN11、SETBP1、STAG2、WT1 |
[1] | 王蔚. 成人骨髓增生异常综合征和再生障碍性盆血的发病率和预后研究[D]. 上海: 复旦大学, 2010. |
WANG W. A Study on incidence,survival rate and prognostic factors of Myelodysplastic syndrome and aplastic anemia in adults[D]. Shanghai: Fudan University, 2010 | |
[2] | 宋陆茜, 常春康. 2023年美国国立综合癌症网络(NCCN)《骨髓增生异常综合征临床实践指南》(第1版)解读[J]. 诊断学理论与实践, 2023, 22(2):116-120. |
SONG L Q, CHANG C K. Interpretation of clinical prae-tice guidelines for myelodysplastie syndrome (version 1, 2023) of National Comprehensive Cancer Nerwork(NCCN)[J]. J Diagn Concepts Pract, 2023, 22(2):116-120. | |
[3] | 姚玉前, 戴碧涛. 骨髓增生异常综合征流行病学的研究进展[J]. 儿科药学杂志, 2012, 18(4):4. |
YAO Y Q, DAI B T. Epidemiological Progress of Myelodysplastic Syndrome[J]. J Pediatr Pharm, 2012, 18(4):4. | |
[4] | 肖志坚. 骨髓增生异常综合征的诊断[J]. 诊断学理论与实践, 2016, 15(6):545-549. |
XIAO Z J. Diagnosis of myelodysplastic syndrome[J]. J Diagn Concept & Pract, 2016, 15(6):545-549. | |
[5] |
KHOURY J D, SOLARY E, ABLA O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms[J]. Leukemia, 2022, 36(7):1703-1719.
doi: 10.1038/s41375-022-01613-1 |
[6] | ARBER D A, ORAZI A, HASSERJIAN R P, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data[J]. Blood, 2022, 140(11):1200-1228. |
[7] |
GREENBERG P L, TUECHLER H, SCHANZ J, et al. Revised international prognostic scoring system for myelodysplastic syndromes[J]. Blood, 2012, 120(12):2454-2465.
doi: 10.1182/blood-2012-03-420489 pmid: 22740453 |
[8] |
BERNARD E, NANNYA Y, HASSERJIAN R P, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes[J]. Nat Med, 2020, 26(10):1549-1556.
doi: 10.1038/s41591-020-1008-z |
[9] |
HAASE D, STEVENSON K E, NEUBERG D, et al. TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups[J]. Leukemia, 2019, 33(7):1747-1758.
doi: 10.1038/s41375-018-0351-2 pmid: 30635634 |
[10] | BERNARD E, TUECHLER H, GREENBERG P L, et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes[J]. NEJM Evid, 2022, 1(7):EVIDoa2200008. |
[11] |
JAIN A G, ZHANG L, BENNETT J M, et al. Myelodysplastic Syndromes with Bone Marrow Fibrosis: An Update[J]. Ann Lab Med, 2022, 42(3):299-305.
doi: 10.3343/alm.2022.42.3.299 pmid: 34907099 |
[12] |
GREENBERG P L, STONE R M, AL-KALI A, et al. Myelodysplastic Syndromes, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2017, 15(1):60-87.
doi: 10.6004/jnccn.2017.0007 URL |
[13] |
BEJAR R. Prognostic models in myelodysplastic syndromes[J]. Hematology Am Soc Hematol Educ Program, 2013, 2013:504-510.
doi: 10.1182/asheducation-2013.1.504 pmid: 24319225 |
[14] |
GREENBERG P, COX C, LEBEAU M M, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes[J]. Blood, 1997, 89(6):2079-2088.
pmid: 9058730 |
[15] |
MALCOVATI L, DELLA PORTA M G, STRUPP C, et al. Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the WHO classification-based Prognostic Scoring System (WPSS)[J]. Haematologica, 2011, 96(10):1433-1440.
doi: 10.3324/haematol.2011.044602 pmid: 21659359 |
[16] |
ALESSANDRINO E P, DELLA PORTA M G, BACIGALUPO A, et al. WHO classification and WPSS predict posttransplantation outcome in patients with myelodysplastic syndrome: a study from the Gruppo Italiano Trapianto di Midollo Osseo (GITMO)[J]. Blood, 2008, 112(3):895-902.
doi: 10.1182/blood-2008-03-143735 pmid: 18497321 |
[17] |
PARK M J, KIM H J, KIM S H, et al. Is International Prognostic Scoring System (IPSS) still standard in predic-ting prognosis in patients with myelodysplastic syndrome? External validation of the WHO Classification-Based Prognostic Scoring System (WPSS) and comparison with IPSS[J]. Eur J Haematol, 2008, 81(5):364-373.
doi: 10.1111/ejh.2008.81.issue-5 URL |
[18] |
ZEIDAN A M, KOMROKJI R S. There's risk, and then there's risk: The latest clinical prognostic risk stratification models in myelodysplastic syndromes[J]. Curr Hematol Malig Rep, 2013, 8(4):351-360.
doi: 10.1007/s11899-013-0172-3 URL |
[19] |
VOSO M T, FENU S, LATAGLIATA R, et al. Revised International Prognostic Scoring System (IPSS) predicts survival and leukemic evolution of myelodysplastic syndromes significantly better than IPSS and WHO Prognostic Scoring System: validation by the Gruppo Romano Mielodisplasie Italian Regional Database[J]. J Clin Oncol, 2013, 31(21):2671-2677.
doi: 10.1200/JCO.2012.48.0764 pmid: 23796988 |
[20] |
GANGAT N, PATNAIK M M, TEFFERI A. Myelodysplastic syndromes: Contemporary review and how we treat[J]. Am J Hematol, 2016, 91(1):76-89.
doi: 10.1002/ajh.24253 pmid: 26769228 |
[21] |
OK C Y, HASSERJIAN R P, FOX P S, et al. Application of the international prognostic scoring system-revised in therapy-related myelodysplastic syndromes and oligoblastic acute myeloid leukemia[J]. Leukemia, 2014, 28(1):185-189.
doi: 10.1038/leu.2013.191 pmid: 23787392 |
[22] |
MALCOVATI L, KARIMI M, PAPAEMMANUIL E, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts[J]. Blood, 2015, 126:233-241. DOI: 10.1182/blood-2015-03-633537.
pmid: 25957392 |
[23] |
MALCOVATI L, STEVENSON K, PAPAEMMANUIL E, et al. SF3B1-mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS[J]. Blood, 2020, 136(2):157-170.
doi: 10.1182/blood.2020004850 pmid: 32347921 |
[24] | OGAWA S. Genetics of MDS. Blood[J]. 2019; 133(10):1049-1059. |
[25] |
GANGULY B B, KADAM N N. Mutations of myelodysplastic syndromes (MDS): An update[J]. Mutat Res Rev Mutat Res, 2016, 769:47-62.
doi: 10.1016/j.mrrev.2016.04.009 pmid: 27543316 |
[26] |
WU J, ZHANG Y, QIN T, et al. IPSS-M has greater survival predictive accuracy compared with IPSS-R in persons ≥ 60 years with myelodysplastic syndromes[J]. Exp Hematol Oncol, 2022, 11(1):73.
doi: 10.1186/s40164-022-00328-4 |
[27] |
SAUTA E, ROBIN M, BERSANELLI M, et al. Real-World Validation of Molecular International Prognostic Scoring System for Myelodysplastic Syndromes[J]. J Clin Oncol, 2023, 41(15):2827-2842.
doi: 10.1200/JCO.22.01784 URL |
[28] |
MALCOVATI L, STEVENSON K, PAPAEMMANUIL E, et al. SF3B1-mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS[J]. Blood, 2020, 136(2):157-170.
doi: 10.1182/blood.2020004850 pmid: 32347921 |
[29] |
DELHOMMEAU F, DUPONT S, DELLA VALLE V, et al. Mutation in TET2 in myeloid cancers[J]. N Engl J Med, 2009, 360(22):2289-2301.
doi: 10.1056/NEJMoa0810069 URL |
[30] |
CIMMINO L, DOLGALEV I, WANG Y, et al. Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression[J]. Cell, 2017, 170(6):1079-1095.e20.
doi: S0092-8674(17)30868-1 pmid: 28823558 |
[31] |
HUANG F, SUN J, CHEN W, et al. HDAC4 inhibition disrupts TET2 function in high-risk MDS and AML[J]. Aging, 2020, 12(17),16759-16774
doi: 10.18632/aging.v12i17 URL |
[32] |
FUJINO T, KITAMURA T. ASXL1 mutation in clonal hematopoiesis[J]. Exp Hematol, 2020, 83:74-84.
doi: S0301-472X(20)30002-3 pmid: 31945396 |
[33] |
FANG Y, GUO J, WU D, et al. Integration Analysis of JAK2 or RUNX1 Mutation With Bone Marrow Blast Can Improve Risk Stratification in the Patients With Lower Risk Myelodysplastic Syndrome[J]. Front Oncol, 2021, 10:610525.
doi: 10.3389/fonc.2020.610525 URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||