诊断学理论与实践 ›› 2024, Vol. 23 ›› Issue (03): 270-277.doi: 10.16150/j.1671-2870.2024.03.004
收稿日期:
2024-05-06
接受日期:
2024-05-30
出版日期:
2024-06-25
发布日期:
2024-06-25
通讯作者:
谢其冰 E-mail: xieqibing1971@163.comReceived:
2024-05-06
Accepted:
2024-05-30
Published:
2024-06-25
Online:
2024-06-25
摘要:
免疫介导坏死性肌病(immune-mediated necrotizing myopathy, IMNM)是一种特发性炎性肌病(Idiopathic Inflammatory Myopathy, IIM)的重要亚型。IMNM的典型临床表现包括对称性四肢近端肌无力,伴随血清肌酸激酶(creatine kinase, CK)等肌酶谱的显著升高。此外,部分患者还可能出现皮疹、间质性肺病和心肌受累等骨骼肌外表现。自2003年首次被国际医学界命名以来,IMNM逐渐被研究者和临床医师所认识。IMNM的发病率和患病率在不同地域和种族间可能有所不同,如在美国的小样本调查中,IMNM的发病率为0.83/10万,患病率为1.85/10万;而在欧洲西班牙北部地区,抗HMGCR抗体阳性患者的IMNM发病率为0.6/10万,患病率为3/10万,目前中国尚缺乏相关数据。IMNM的患病风险因素包括易感等位基因如HLA-DRB1*11,以及使用他汀类药物、免疫检查点抑制剂和感染病毒感染等。诊断IMNM需要综合考虑肌肉受累症状、肌炎特异性自身抗体、肌酶谱水平和肌活检病理等检查结果。目前,IMNM的治疗主要基于临床经验,包括使用糖皮质激素和传统免疫抑制剂。对于难治性患者,可能采用利妥昔单抗和静脉注射人免疫球蛋白等治疗方案。针对B细胞及其致病性自身抗体的产生过程,未来的研究可能揭示新的治疗靶点。本文旨在系统介绍IMNM的临床特征、诊断方法及相关辅助检查,并探讨当前的治疗策略,以期为临床医师提供诊治IMNM的参考和借鉴。
中图分类号:
刘洪江, 谢其冰. 免疫介导坏死性肌病诊治进展[J]. 诊断学理论与实践, 2024, 23(03): 270-277.
LIU Hongjiang, XIE Qibing. Advances in study on diagnosis and treatment of immune-mediated necrotizing myopathy[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(03): 270-277.
[1] | LUNDBERG I E, FUJIMOTO M, VENCOVSKY J, et al. Idiopathic inflammatory myopathies[J]. Nat Rev Dis Pri-mers, 2021, 7(1):86. |
[2] | BOHAN A, PETER J B. Polymyositis and dermatomyositis (first of two parts)[J]. N Engl J Med, 1975, 292(7):344-347. |
[3] | BOHAN A, PETER J B. Polymyositis and dermatomyositis (second of two parts)[J]. N Engl J Med, 1975, 292(8):403-407. |
[4] | HOOGENDIJK J E, AMATO A A, LECKY B R, et al. 119th ENMC international workshop: trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 10-12 October 2003, Naarden, The Netherlands[J]. Neuromuscul Disord, 2004, 14(5):337-345. |
[5] | LUNDBERG I E, TJÄRNLUND A, BOTTAI M, et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups[J]. Ann Rheum Dis,2017, 76(12):1955-1964. |
[6] | DAMOISEAUX J, MAMMEN A L, PIETTE Y, et al. 256(th) ENMC international workshop: Myositis specific and associated autoantibodies (MSA-ab): Amsterdam, The Netherlands, 8-10 October 2021[J]. Neuromuscul Disord, 2022, 32(7):594-608. |
[7] |
ALLENBACH Y, BENVENISTE O, STENZEL W, et al. Immune-mediated necrotizing myopathy: clinical features and pathogenesis[J]. Nat Rev Rheumatol, 2020, 16(12):689-701.
doi: 10.1038/s41584-020-00515-9 pmid: 33093664 |
[8] | ALLENBACH Y, MAMMEN A L, BENVENISTE O, et al. 224th ENMC International Workshop: Clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14-16 October 2016[J]. Neuromuscul Disord, 2018, 28(1):87-99. |
[9] |
SHELLY S, MIELKE M M, PAUL P, et al. Incidence and prevalence of immune-mediated necrotizing myopathy in adults in Olmsted County, Minnesota[J]. Muscle Nerve, 2022, 65(5):541-546.
doi: 10.1002/mus.27504 pmid: 35064938 |
[10] | PRIETO-PEÑA D, OCEJO-VINYALS J G, MAZARIEGOS-CANO J, et al. Epidemiological and genetic features of anti-3‑hydroxy-3-methylglutaryl-CoA reductase necrotizing myopathy: Single-center experience and literature review[J]. Eur J Intern Med, 2022, 101:86-92. |
[11] | WANG C H, LIANG W C. Pediatric immune-mediated necrotizing myopathy[J]. Front Neurol, 2023, 14:1123380. |
[12] |
ROTHWELL S, CHINOY H, LAMB J A, et al. Focused HLA analysis in Caucasians with myositis identifies significant associations with autoantibody subgroups[J]. Ann Rheum Dis, 2019, 78(7):996-1002.
doi: 10.1136/annrheumdis-2019-215046 pmid: 31138531 |
[13] | OHNUKI Y, SUZUKI S, URUHA A, et al. Association of immune-mediated necrotizing myopathy with HLA polymorphisms[J]. Hla, 2023, 101(5):4494-57. |
[14] | ADLER B, CHRISTOPHER-STINE L, TINIAKOU E. Mushroom supplements triggering a flare of HMGCR immune mediated necrotising myopathy[J]. BMJ Case Rep, 2022, 15(5):e248880. |
[15] |
PARKER B A, CAPIZZI J A, GRIMALDI A S, et al. Effect of statins on skeletal muscle function[J]. Circulation, 2013, 127(1):96-103.
doi: 10.1161/CIRCULATIONAHA.112.136101 pmid: 23183941 |
[16] | MAMMEN A L, PAK K, WILLIAMS E K, et al. Rarity of anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase antibodies in statin users, including those with self-limi-ted musculoskeletal side effects[J]. Arthritis Care Res (Hoboken), 2012, 64(2):269-272. |
[17] |
KAO J C, LIAO B, MARKOVIC S N, et al. Neurological complications associated with anti-programmed death 1 (PD-1) antibodies[J]. JAMA Neurol, 2017, 74(10):1216-1222.
doi: 10.1001/jamaneurol.2017.1912 pmid: 28873125 |
[18] | TAN C Y, TOH T H, TOH Y F, et al. A temporal association between COVID-19 vaccination and immune-mediated necrotizing myopathy[J]. Muscle Nerve, 2022, 65(6):E24-E26. |
[19] | TSUZUKI WADA T, YOKOTA K, INAYOSHI F, et al. New-onset immune-mediated necrotizing myopathy and trigeminal neuropathy after SARS-CoV-2 mRNA vaccination in a patient with rheumatoid arthritis and sjogren's syndrome[J]. Intern Med, 2023, 62(24):3699-3706. |
[20] |
DODIG D, TARNOPOLSKY M A, MARGETA M, et al. COVID-19-associated critical illness myopathy with direct viral effects[J]. Ann Neurol, 2022, 91(4):568-574.
doi: 10.1002/ana.26318 pmid: 35148013 |
[21] |
WATANABE Y, URUHA A, SUZUKI S, et al. Clinical features and prognosis in anti-SRP and anti-HMGCR necrotising myopathy[J]. J Neurol Neurosurg Psychiatry, 2016, 87(10):1038-1044.
doi: 10.1136/jnnp-2016-313166 pmid: 27147697 |
[22] | YANG H, TIAN X, ZHANG L, et al. Clinical and pathological features of immune-mediated necrotising myopathies in a single-centre muscle biopsy cohort[J]. BMC Musculoskelet Disord, 2022, 23(1):425. |
[23] | XU L, YANG M G, HU L, et al. Anti-signal recognition particle positive necrotizing myopathy-sjogren's syndrome overlap syndrome: a descriptive study on clinical and myopathology features[J]. BMC Musculoskelet Disord, 2023, 24(1):219. |
[24] | MA X, XU L, JI S, et al. The clinicopathological distinction between seropositive and seronegative immune-mediated necrotizing myopathy in China[J]. Front Neurol, 2021, 12:670784. |
[25] | WILLIAMS B, HORN M P, BANZ Y, et al. Cutaneous involvement in anti-HMGCR positive necrotizing myopathy[J]. J Autoimmun, 2021, 123:102691. |
[26] |
GE Y, YANG H, XIAO X, et al. Interstitial lung disease is not rare in immune-mediated necrotizing myopathy with anti-signal recognition particle antibodies[J]. BMC Pulm Med, 2022, 22(1):14.
doi: 10.1186/s12890-021-01802-1 pmid: 35000598 |
[27] | YANG H, LI W, TIAN X, et al. Immune-mediated necrotizing myopathies and interstitial lung disease are predominant characteristics in anti-Ku positive patients with idiopathic inflammatory myopathies[J]. Ann Rheum Dis, 2022, 81(3):e48. |
[28] | KHAN O A, WILCHES R M, MEHRABI J N, et al. Evidence of cardiac involvement in a patient with necroti-zing autoimmune myopathy (NAM)[J]. Cureus, 2023, 15(8):e44106. |
[29] | LIU M, LIN Y, QIAO L, et al. Characteristics of cardiac involvement in immune-mediated necrotizing myopathy[J]. Front Immunol, 2023, 14:1094611. |
[30] |
CHEN J, LIN D L, LIN A Y. A case of meningoencephalomyelitis associated with immune-mediated necrotizing myopathy[J]. Neurol Sci, 2022, 43(11):6585-6588.
doi: 10.1007/s10072-022-06279-2 pmid: 35882699 |
[31] | HUANG L Y, PENG Y J, SUNG Y F. Anti-SRP myopathy with sensorimotor polyneuropathy: a case report[J]. Acta Neurol Taiwan, 2023, 32(4):212-217. |
[32] |
LI J, YAN M, QIN J, et al. Deep venous thrombosis in an individual with statin-exposed anti-SRP myopathy: case report and review of literature[J]. Thromb J, 2021, 19(1):92.
doi: 10.1186/s12959-021-00347-x pmid: 34823539 |
[33] | SAKAI K, TAKAHASHI M, ITO Y, et al. Thrombotic microangiopathy in a patient with anti-signal recognition particle antibody-positive immune-mediated necrotizing myopathy[J]. Int J Rheum Dis, 2024, 27(1):e14942. |
[34] |
ALLENBACH Y, KERAEN J, BOUVIER A M, et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody[J]. Brain, 2016, 139(Pt 8):2131-2135.
doi: 10.1093/brain/aww054 pmid: 27086869 |
[35] |
SHELLY S, BEECHER G, MILONE M, et al. Cancer and immune-mediated necrotizing myopathy: a longitudinal referral case-controlled outcomes evaluation[J]. Rheumatology (Oxford), 2022, 62(1):281-289.
doi: 10.1093/rheumatology/keac144 pmid: 35285492 |
[36] | ALLENBACH Y, MAMMEN A L, BENVENISTE O, et al. Immune-Mediated Necrotizing Myopathies Working G. 224th ENMC International Workshop: Clinico-sero-pathological classification of immune-mediated necroti-zing myopathies Zandvoort, The Netherlands, 14-16 October 2016[J]. Neuromuscul Disord, 2018, 28(1):87-99. |
[37] | PINAL-FERNANDEZ I, CASAL-DOMINGUEZ M, MAMMEN A L. Immune-mediated necrotizing myopathy[J]. Curr Rheumatol Rep, 2018, 20(4):21. |
[38] | WALTER P, BLOBEL G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum[J]. Nature, 1982, 299(5885):691-698. |
[39] | QIU R, WANG Z, WEI X, et al. The pathogenesis of anti-signal recognition particle necrotizing myopathy: A Review[J]. Biomed Pharmacother, 2022, 156:113936. |
[40] |
SUZUKI S, NISHIKAWA A, KUWANA M, et al. Inflammatory myopathy with anti-signal recognition particle antibodies: case series of 100 patients[J]. Orphanet J Rare Dis, 2015, 10:61.
doi: 10.1186/s13023-015-0277-y pmid: 25963141 |
[41] |
ZHENG Y, ZHAO Y, HAO H, et al. What should we expect when two myositis-specific antibodies coexist in a patient[J]. Eur J Med Res, 2023, 28(1):429.
doi: 10.1186/s40001-023-01363-5 pmid: 37828570 |
[42] |
FRIESEN J A, RODWELL V W. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases[J]. Genome Biol, 2004, 5(11):248.
pmid: 15535874 |
[43] | BENVENISTE O, DROUOT L, JOUEN F, et al. Correlation of anti-signal recognition particle autoantibody levels with creatine kinase activity in patients with necrotizing myopathy[J]. Arthritis Rheum, 2011, 63(7):1961-1971. |
[44] | DROUOT L, ALLENBACH Y, JOUEN F, et al. Explo-ring necrotizing autoimmune myopathies with a novel immunoassay for anti-3-hydroxy-3-methyl-glutaryl-CoA reductase autoantibodies[J]. Arthritis Res Ther, 2014, 16(1):R39. |
[45] | TSENG C W, SATOH M, HASEGAWA T, et al. Analytic and clinical validity of myositis-specific antibodies by line-blot immunoassay is essential[J]. J Clin Rheumatol, 2024, 30(1):e23-e28. |
[46] | MERLONGHI G, ANTONINI G, GARIBALDI M. Immune-mediated necrotizing myopathy (IMNM): A myopathological challenge[J]. Autoimmun Rev, 2022, 21(2):102993. |
[47] | KIMURA M, AIZAWA A, KUDOU R, et al. Differences in muscle magnetic resonance imaging findings between anti-signal recognition particle antibody-positive myopathy and anti-aminoacyl-tRNA synthetase antibody-positive myositis[J]. Clin Exp Rheumatol, 2024, 42(2):321-328. |
[48] | WEI P, ZHONG H, XIE Q, et al. Machine learning-based radiomics to differentiate immune-mediated necrotizing myopathy from limb-girdle muscular dystrophy R2 using MRI[J]. Front Neurol, 2023, 14:1251025. |
[49] | KUBOTA A, SHIMIZU J, UNUMA A, et al. Alanine transaminase is predominantly increased in the active phase of anti-HMGCR myopathy[J]. Neuromuscul Disord, 2022, 32(1):25-32. |
[50] |
URUHA A, NOGUCHI S, SATO W, et al. Plasma IP-10 level distinguishes inflammatory myopathy[J]. Neurology, 2015, 85(3):293-294.
doi: 10.1212/WNL.0000000000001767 pmid: 26136521 |
[51] | DE PAEPE B, BRACKE K R, DE BLEECKER J L. Retrospective study shows that serum levels of chemokine CXCL10 and cytokine GDF15 support a diagnosis of sporadic inclusion body myositis and immune-mediated necrotizing myopathy[J]. Brain Sci, 2023, 13(10):1369. |
[52] | YANG M G, ZHANG Q, WANG H, et al. The accumulation of muscle RING finger-1 in regenerating myofibers: Implications for muscle repair in immune-mediated necrotizing myopathy[J]. Front Neurol, 2022, 13:1032738. |
[53] |
HANAOKA B Y, PETERSON C A, HORBINSKI C, et al. Implications of glucocorticoid therapy in idiopathic inflammatory myopathies[J]. Nat Rev Rheumatol, 2012, 8(8):448-457.
doi: 10.1038/nrrheum.2012.85 pmid: 22688888 |
[54] |
RADEMACHER J G, GLAUBITZ S, ZECHEL S, et al. Treatment and outcomes in anti-HMG-CoA reductase-associated immune-mediated necrotising myopathy. Comparative analysis of a single-centre cohort and published data[J]. Clin Exp Rheumatol, 2022, 40(2):320-328.
doi: 10.55563/clinexprheumatol/2ao5ze pmid: 35225222 |
[55] | WANG J X, WILKINSON M, OLDMEADOW C, et al. Outcome predictors of immune-mediated necrotizing myo-pathy-a retrospective, multicentre study[J]. Rheumato-logy (Oxford), 2022, 61(9):3824-3829. |
[56] | KOCOLOSKI A, MARTINEZ S, MOGHADAM-KIA S, et al. Role of intravenous immunoglobulin in necrotizing autoimmune myopathy[J]. J Clin Rheumatol, 2022, 28(2):e517-e520. |
[57] | ZHANG H, SUN Y, LIU H, et al. Plasma exchange therapy in refractory inflammatory myopathy with anti-signal recognition particle antibody: a case series[J]. Rheumatology (Oxford), 2022, 61(6):2625-2630. |
[58] | CHEN S, YANG J, HE D, et al. Anti-SRP immune-media-ted necrotizing myopathy responsive to ofatumumab: a case report[J]. Front Immunol, 2023, 14:1301109. |
[59] | CUI B B, TIAN Y R, MA X Y, et al. Belimumab for immune-mediated necrotizing myopathy associated with anti-SRP antibodies: a case report and retrospective review of patients treated with anti-B-cell therapy in a single center and literature[J]. Front Immunol, 2021, 12:777502. |
[60] | WEN C, YANG J, WEI D, et al. Anti-signal recognition particle antibody-positive immune-mediated necrotizing myopathy treated with ofatumumab[J]. Rheumatology (Oxford), 2024, 63(2):e53-e55. |
[61] | LI S, LI W, JIANG W, et al. The efficacy of tocilizumab in the treatment of patients with refractory immune-media-ted necrotizing myopathies: an open-label pilot study[J]. Front Pharmacol, 2021, 12:635654. |
[62] | JULIEN S, VADYSIRISACK D, SAYEGH C, et al. Prevention of anti-HMGCR immune-mediated necrotising myopathy by C5 complement inhibition in a humanised mouse model[J]. Biomedicines, 2022, 10(8):2036. |
[63] | MAMMEN A L, AMATO A A, DIMACHKIE M M, et al. Zilucoplan in immune-mediated necrotising myopathy: a phase 2, randomised, double-blind, placebo-controlled, multicentre trial[J]. Lancet Rheumatol, 2023, 5(2):e67-e76. |
[64] | JULIEN S, VAN DER WONING B, DE CEUNINCK L, et al. Efgartigimod restores muscle function in a humanized mouse model of immune-mediated necrotizing myopathy[J]. Rheumatology (Oxford), 2023, 62(12):4006-4011. |
[65] | QIN C, DONG M H, ZHOU L Q, et al. Single-cell analysis of refractory anti-SRP necrotizing myopathy treated with anti-BCMA CAR-T cell therapy[J]. Proc Natl Acad Sci U S A, 2024, 121(6):e2315990121. |
[66] |
DE OLIVEIRA D S, BRUNA PIRES BORGES I, KAZUE NAGAHASHI MARIE S, et al. Exercise training attenuates skeletal muscle fat infiltration and improves insulin pathway of patients with immune-mediated necrotizing myopathies and dermatomyositis[J]. Arch Rheumatol, 2023, 38(2):189-199.
doi: 10.46497/ArchRheumatol.2023.9257 pmid: 37680507 |
[1] | 李一林, 陈杨, 李艳艳, 冯旭娇, 章程, 李健, 沈琳. 循环肿瘤细胞检测在常见恶性肿瘤精准医学中的应用和展望[J]. 诊断学理论与实践, 2023, 22(04): 332-340. |
[2] | 李佳, 吕良敬. 靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(03): 299-303. |
[3] | 马韵芳, 潘丽娜, 张培培, 何清, 徐志红, 胡家安. 人类表皮生长因子受体2基因扩增的非小细胞肺癌一例报告[J]. 诊断学理论与实践, 2018, 17(04): 462-465. |
[4] | 于颖彦,. 亚洲癌症研究组新近提出胃癌分子分型的浅析[J]. 诊断学理论与实践, 2015, 14(06): 511-513. |
[5] | 贺琪, 常春康,. 骨髓增生异常综合征分子发病机制的新进展[J]. 诊断学理论与实践, 2014, 13(01): 90-94. |
[6] | 苏长青,. 肿瘤分子病理学发展的机遇与挑战[J]. 诊断学理论与实践, 2013, 12(06): 580-586. |
[7] | 应建明, 邱田,. 肺癌表皮生长因子基因突变和间变性淋巴瘤激酶融合基因的规范化检测[J]. 诊断学理论与实践, 2013, 12(06): 591-595. |
[8] | 成小姣, 涂水平,. 靶向survivin在肿瘤治疗中的研究进展[J]. 诊断学理论与实践, 2013, 12(04): 483-486. |
[9] | 刘佳, 杨新春, 蔡军,. 高血压相关的微小RNA研究进展[J]. 诊断学理论与实践, 2012, 11(06): 627-629. |
[10] | 周尘飞, 张俊, 朱正纲,. 胰腺神经内分泌肿瘤的诊断及靶向治疗机制[J]. 诊断学理论与实践, 2011, 10(04): 357-361. |
[11] | 杨瑞, 常春康,. 白血病微环境的靶向药物趋化因子受体CXCR4拮抗剂作用机制的研究[J]. 诊断学理论与实践, 2010, 9(05): 521-525. |
[12] | . 第三届中国“分子诊断进展及临床应用”高峰论坛会议纪要[J]. 诊断学理论与实践, 2009, 8(03): 247-. |
[13] | 张俊, 谢克平, 朱正纲, 林言箴,. 从分子标志物检测谈结肠直肠肿瘤的药物治疗[J]. 诊断学理论与实践, 2009, 8(01): 20-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||