诊断学理论与实践 ›› 2021, Vol. 20 ›› Issue (02): 221-224.doi: 10.16150/j.1671-2870.2021.02.019
收稿日期:
2020-10-23
出版日期:
2021-04-25
发布日期:
2022-06-28
通讯作者:
常春康
E-mail:changchunkang@sjtu.edu.cn
基金资助:
Received:
2020-10-23
Online:
2021-04-25
Published:
2022-06-28
中图分类号:
王柔嘉, 常春康. 调节性T细胞在骨髓增生异常综合征危险分层中的研究进展[J]. 诊断学理论与实践, 2021, 20(02): 221-224.
[1] |
Zeidan AM, Shallis RM, Wang R, et al. Epidemiology of myelodysplastic syndromes: why characterizing the beast is a prerequisite to taming it[J]. Blood Rev, 2019, 34:1-15.
doi: S0268-960X(18)30065-1 pmid: 30314642 |
[2] |
Zeidan AM, Shallis RM, Wang R, et al. Epidemiology of myelodysplastic syndromes: Why characterizing the beast is a prerequisite to taming it[J]. Blood Rev, 2019, 34:1-15.
doi: S0268-960X(18)30065-1 pmid: 30314642 |
[3] | 中华医学会血液学分会. 骨髓增生异常综合征中国诊断与治疗指南(2019年版)[J]. 中华血液学杂志, 2019, 40(2):89-97. |
[4] |
Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3):1151-1164.
pmid: 7636184 |
[5] |
Kanamori M, Nakatsukasa H, Okada M, et al. Induced regulatory T cells: their development, stability, and applications[J]. Trends Immunol, 2016, 37(11):803-811.
doi: 10.1016/j.it.2016.08.012 URL |
[6] | Rueda CM, Jackson CM, Chougnet CA. Regulatory T-cell-mediated suppression of conventional T-cells and dendritic cells by different cAMP intracellular pathways[J]. Front Immunol, 2016, 7:216. |
[7] |
Ovcinnikovs V, Ross EM, Petersone L, et al. CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells[J]. Sci Immunol, 2019, 4(35):eaaw0902.
doi: 10.1126/sciimmunol.aaw0902 URL |
[8] |
Gill H, Leung AY, Kwong YL. Molecular and cellular mechanisms of myelodysplastic syndrome: implications on targeted therapy[J]. Int J Mol Sci, 2016, 17(4):440.
doi: 10.3390/ijms17040440 URL |
[9] |
Korn C, Méndez-Ferrer S. Myeloid malignancies and the microenvironment[J]. Blood, 2017, 129(7):811-822.
doi: 10.1182/blood-2016-09-670224 URL |
[10] |
Ruggiero G, Sica M, Luciano L, et al. A case of myelodysplastic syndrome associated with CD14(+)CD56(+) monocytosis, expansion of NK lymphocytes and defect of HLA-E expression[J]. Leuk Res, 2009, 33(1):181-185.
doi: 10.1016/j.leukres.2008.03.019 URL |
[11] | Landman S, Cruijsen M, Urbano PCM, et al. DNA methyltransferase inhibition promotes Th1 polarization in human CD4+ CD25 high FOXP3+ regulatory T cells but does not affect their suppressive capacity[J]. J Immunol Res, 2018, 2018:4973964. |
[12] |
Leone P, Solimando AG, Malerba E, et al. Actors on the scene: immune cells in the myeloma niche[J]. Front Oncol, 2020, 10:599098.
doi: 10.3389/fonc.2020.599098 URL |
[13] |
Mailloux AW, Sugimori C, Komrokji RS, et al. Expansion of effector memory regulatory T cells represents a novel prognostic factor in lower risk myelodysplastic syndrome[J]. J Immunol, 2012, 189(6):3198-208.
doi: 10.4049/jimmunol.1200602 pmid: 22875800 |
[14] |
Costantini B, Kordasti SY, Kulasekararaj AG, et al. The effects of 5-azacytidine on the function and number of regulatory T cells and T-effectors in myelodysplastic syndrome[J]. Haematologica, 2013, 98(8):1196-1205.
doi: 10.3324/haematol.2012.074823 pmid: 23242597 |
[15] | Nishikawa H, Jäger E, Ritter G, et al. CD4+ CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients[J]. Blood, 2005, 106(3):1008-1011. |
[16] |
Shi X, Zheng Y, Xu L, et al. The inflammatory cytokine profile of myelodysplastic syndromes: a meta-analysis[J]. Medicine (Baltimore), 2019, 98(22):e15844.
doi: 10.1097/MD.0000000000015844 URL |
[17] |
Zou L, Barnett B, Safah H, et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals[J]. Cancer Res, 2004, 64(22):8451-8455.
doi: 10.1158/0008-5472.CAN-04-1987 URL |
[18] |
Fritsch RD, Shen X, Illei GG, et al. Abnormal differentia-tion of memory T cells in systemic lupus erythematosus[J]. Arthritis Rheum, 2006, 54(7):2184-2197.
doi: 10.1002/art.21943 URL |
[19] |
Kordasti SY, Ingram W, Hayden J, et al. CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS)[J]. Blood, 2007, 110(3):847-850.
doi: 10.1182/blood-2007-01-067546 pmid: 17412885 |
[20] |
Bleul CC, Wu L, Hoxie JA, et al. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes[J]. Proc Natl Acad Sci USA, 1997, 94(5):1925-1930.
doi: 10.1073/pnas.94.5.1925 URL |
[21] |
Fragale A, Gabriele L, Stellacci E, et al. IFN regulatory factor-1 negatively regulates CD4+ CD25+ regulatory T cell differentiation by repressing Foxp3 expression[J]. J Immunol, 2008, 181(3):1673-1682.
doi: 10.4049/jimmunol.181.3.1673 URL |
[22] |
Pinheiro RF, Metze K, Silva MR, et al. The ambiguous role of interferon regulatory factor-1(IRF-1) immunoexpression in myelodysplastic syndrome[J]. Leuk Res, 2009, 33(10):1308-1312.
doi: 10.1016/j.leukres.2009.03.008 URL |
[23] |
Shastri A, Will B, Steidl U, et al. Stem and progenitor cell alterations in myelodysplastic syndromes[J]. Blood, 2017, 129(12):1586-1594.
doi: 10.1182/blood-2016-10-696062 pmid: 28159737 |
[24] | Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor[J]. Nat Rev Immunol, 2020, 20(3):173-185. |
[25] | 邓圆圆, 范益民. TIM-3在肿瘤免疫中的研究进展[J]. 中华神经创伤外科电子杂志, 2016, 2(2):112-115. |
[26] |
Sun L, Fu J, Zhou Y. Metabolism controls the balance of Th17/T-regulatory cells[J]. Front Immunol, 2017, 8:1632.
doi: 10.3389/fimmu.2017.01632 URL |
[27] |
Sałkowska A, Karaś K, Karwaciak I, et al. Identification of novel molecular markers of human Th17 cells[J]. Cells, 2020, 9(7):1611.
doi: 10.3390/cells9071611 URL |
[28] |
Bhaskaran N, Faddoul F, Paes da Silva A, et al. IL-1β-myD88-mTOR axis promotes immune-protective IL-17A+ Foxp3+ cells during mucosal infection and is dysregula-ted with aging[J]. Front Immunol, 2020, 11:595936.
doi: 10.3389/fimmu.2020.595936 URL |
[29] |
Pawlik A, Anisiewicz A, Filip-Psurska B, et al. Divergent effect of tacalcitol (PRI-2191) on Th17 cells in 4T1 tumor bearing young and old ovariectomized mice[J]. Aging Dis, 2020, 11(2):241-253.
doi: 10.14336/AD.2019.0618 |
[30] |
Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity[J]. Cell Mol Immunol, 2018, 15(5):458-469.
doi: 10.1038/s41423-018-0004-4 pmid: 29563615 |
[31] |
Prabhala RH, Pelluru D, Fulciniti M, et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma[J]. Blood, 2010, 115(26):5385-5392.
doi: 10.1182/blood-2009-10-246660 pmid: 20395418 |
[32] |
Kahn JD, Chamuleau ME, Westers TM, et al. Regulatory T cells and progenitor B cells are independent prognostic predictors in lower risk myelodysplastic syndromes[J]. Haematologica, 2015, 100(6):e220-e222.
doi: 10.3324/haematol.2014.116657 URL |
[33] |
Williamson BT, Foltz L, Leitch HA. Leitch. Autoimmune syndromes presenting as a paraneoplastic manifestation of myelodysplastic syndromes: clinical features, course, treatment and outcome hematol rep[J]. Hematol Rep, 2016, 8(2):6480.
doi: 10.4081/hr.2016.6480 URL |
[34] | Moon HW, Kim BH, Park CM, et al. CD4+CD25high Foxp3+ regulatory T-cells in hematologic diseases[J]. Korean J Lab Med, 2011, 31(4):231-237. |
[1] | 李佳, 吕良敬. 靶向治疗时代议自身免疫病的感染挑战[J]. 诊断学理论与实践, 2022, 21(03): 299-303. |
[2] | 陈煦阳, 顾卫琼. 胰岛素自身抗体临床检测应用局限及对策研究进展[J]. 诊断学理论与实践, 2022, 21(01): 95-98. |
[3] | 陆弘逾, 顾俊, 王静, 曹亚峰, 宋陆茜, 范俊, 陈梅. 干燥综合征继发隐球菌性脑膜脑炎一例报告及相关自身免疫病文献复习[J]. 诊断学理论与实践, 2021, 20(05): 456-461. |
[4] | 谭英斌, 谢玲, 吴云林, 陈平. 自身免疫性胃炎关联疾病3例报道并文献复习[J]. 诊断学理论与实践, 2021, 20(05): 484-490. |
[5] | 吴歆, 耿旭强, 徐沪济. 多基因风险评分在复杂性状疾病中的应用进展[J]. 诊断学理论与实践, 2020, 19(05): 540-543. |
[6] | 叶成林, 姚永华, 陈真, 贾麟. 骨髓活检塑胶包埋在以单纯血小板减少为表现的骨髓增生异常综合征诊断中的应用价值[J]. 诊断学理论与实践, 2020, 19(02): 177-181. |
[7] | 吴凌云, 常春康. 骨髓增生异常综合征的诊治最新进展[J]. 诊断学理论与实践, 2019, 18(06): 623-629. |
[8] | 杜云志, 冯菁华, 常春康. 二代测序技术在骨髓增生异常综合征临床诊断和治疗决策中的应用进展[J]. 诊断学理论与实践, 2019, 18(06): 685-671. |
[9] | 马思雨, 梁茜, 陈昌明, 王学锋, 丁秋兰. 3例自身免疫性血友病样凝血因子缺陷症患者ⅩⅢ诊断流程的初步建立及文献回顾[J]. 诊断学理论与实践, 2018, 17(06): 650-657. |
[10] | 宋丹丹, 常春康, 郭娟, 许峰, 赵佑山, 吴凌云. 骨髓增生异常综合征患者骨髓巨噬细胞百分比异常及其意义[J]. 诊断学理论与实践, 2018, 17(04): 439-443. |
[11] | 张莉莉, 朱洁. 神经系统自身免疫性疾病的抗体检测及临床意义[J]. 诊断学理论与实践, 2018, 17(04): 396-402. |
[12] | 王成云, 张帆, 顾萍, 潘秋辉, 王静. 二例自身免疫性溶血性贫血患儿的输血前检测及疗效评价[J]. 诊断学理论与实践, 2018, 17(03): 290-293. |
[13] | 李坦, 李斌, 刘媛媛, 鲍扬漪. 原发免疫性血小板减少症患者外周血Treg细胞程序性死亡受体-1的表达[J]. 诊断学理论与实践, 2018, 17(03): 294-298. |
[14] | 王敏敏, 曾惠, 郭晓珺. CD4+CD25+CD127-/low调节性T细胞和Th17细胞在ITP发病中的研究进展[J]. 诊断学理论与实践, 2018, 17(02): 220-224. |
[15] | 师蕾, 常春康. 间充质干细胞在骨髓增生异常综合征发病机制中的研究进展[J]. 诊断学理论与实践, 2018, 17(01): 123-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||