诊断学理论与实践 ›› 2024, Vol. 23 ›› Issue (06): 561-567.doi: 10.16150/j.1671-2870.2024.06.001
• 国内外学术动态 • 下一篇
收稿日期:
2024-02-02
出版日期:
2024-12-25
发布日期:
2024-12-25
通讯作者:
孙良丹 E-mail: liangds@ncst.edu.cn基金资助:
Received:
2024-02-02
Published:
2024-12-25
Online:
2024-12-25
摘要:
1984年,流行病学调查提示,中国银屑病的患病率为0.123%,而2008年在中国6个省市的调查显示,患病率上升至0.47%,相比之下,欧美国家的患病率则在2%~4%之间。银屑病是一种复杂的多基因遗传疾病。31.26%的中国银屑病患者有家族史,先证银屑病患者的一级亲属和二级亲属的银屑病患病率分别为7.24%和0.95%,遗传度分别达67.04%和46.59%,呈现随亲缘系数增加而遗传度降低的趋势。国内外已经发现了100余个银屑病的易感基因位点,许多与免疫系统有关的基因变异也与银屑病的发病有关,中国人群位点约占38%。遗传连锁分析,提示白细胞介素(interleukin, IL)-15基因是中国人银屑病的易感基因;全基因组关联研究(Genome-Wide Association Studies,GWAS)发现多个与银屑病相关的易感基因位点。在多中心和多种族的荟萃分析中,识别出LOC144817、RUNX1 、COG6和TP63基因。中国人群与欧美人群在HLA-I区域的易感基因上表现出不同的等位基因频率。这种遗传异质性提示在不同人群中可能存在不同的发病机制和治疗靶点,研究人员发现了多个具有特定人群效应的易感位点,这进一步强调了在不同人群中开展独立研究的重要性。随着易感基因的不断发现,如何将这些研究成果转化为临床应用,如个体化治疗和药物开发,是未来研究的重要方向。
中图分类号:
陈微微, 孙良丹. 中国人群银屑病遗传流行病学研究进展[J]. 诊断学理论与实践, 2024, 23(06): 561-567.
CHEN Weiwei, SUN Liangdan. Research progress in genetic epidemiology of psoriasis in Chinese population[J]. Journal of Diagnostics Concepts & Practice, 2024, 23(06): 561-567.
[1] | 中华医学会皮肤性病学分会银屑病专业委员会. 中国银屑病诊疗指南(2023版)[J]. 中华皮肤科杂志, 2023, 56(07): 573-625. |
Committee on Psoriasis, Chinese Society of Dermatology. Guideline for the diagnosis and treatment of psoriasis in China (2023 edition)[J]. Chin J Dermatol, 2023, 56(7): 573-625. | |
[2] |
ZHANG X, WANG H, TE-SHAO H, et al. The genetic epidemiology of psoriasis vulgaris in Chinese Han[J]. Int J Dermatol, 2002, 41(10):663-669.
doi: 10.1046/j.1365-4362.2002.01596.x pmid: 12390189 |
[3] | 冯小燕, 徐丽敏. 寻常型银屑病遗传流行病学分析[J]. 中国城乡企业卫生, 2019, 34(3):4-6. |
FENG X Y, XV L M. Genetic epidemiological analysis of psoriasis vulgaris[J]. Chin J Urban Rural Enterprise Hyg, 2019, 34(3):4-6. | |
[4] | ZHANG X J, YAN K L, WANG Z M, et al. Polymorphisms in interleukin-15 gene on chromosome 4q31.2 are associated with psoriasis vulgaris in Chinese population[J]. J Invest Dermatol, 2007, 127(11):2544-2551. |
[5] | ŻYŻYŃSKA-GRANICA B, TRZASKOWSKI B, NIEWIECZERZAŁ S, et al. Pharmacophore guided discovery of small-molecule interleukin 15 inhibitors[J]. Eur J Med Chem, 2017, 136:543-547. |
[6] |
STRANGER B E, STAHL E A, RAJ T. Progress and promise of genome-wide association studies for human complex trait genetics[J]. Genetics, 2011, 187(2):367-383.
doi: 10.1534/genetics.110.120907 pmid: 21115973 |
[7] | 张学军. 全基因组关联分析对银屑病遗传学研究的启示[J]. 浙江大学学报(医学版), 2009, 38(4):333-337. |
ZHANG X J. Enlightenment from genome-wide association study to genetics of psoriasis[J]. J Zhejiang Univ (Med Sci), 2009, 38(4):333-337. | |
[8] | ZHANG X J, HUANG W, YANG S, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21[J]. Nat Genet, 2009, 41(2):205-210. |
[9] | SUN L D, CHENG H, WANG Z X, et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population[J]. Nat Genet, 2010, 42(11):1005-1009. |
[10] | SUN L, CAO Y, HE N, et al. Association between LCE gene polymorphisms and psoriasis vulgaris among Mongolians from Inner Mongolia[J]. Arch Dermatol Res, 2018, 310(4):321-327. |
[11] |
YIN X, LOW H Q, WANG L, et al. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility[J]. Nat Commun, 2015, 6:6916.
doi: 10.1038/ncomms7916 pmid: 25903422 |
[12] | CHEN W, WANG W, YONG L, et al. Genome-wide meta-analysis identifies ten new psoriasis susceptibility loci in the Chinese population[J]. J Genet Genomics, 2022, 49(2):177-180. |
[13] |
TANG H, JIN X, LI Y, et al. A large-scale screen for coding variants predisposing to psoriasis[J]. Nat Genet, 2014, 46(1):45-50.
doi: 10.1038/ng.2827 pmid: 24212883 |
[14] |
ZUO X, SUN L, YIN X, et al. Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis[J]. Nat Commun, 2015, 6:6793.
doi: 10.1038/ncomms7793 pmid: 25854761 |
[15] |
ZHEN Q, YANG Z, WANG W, et al. Genetic study on small insertions and deletions in psoriasis reveals a role in complex human diseases[J]. J Invest Dermatol, 2019, 139(11):2302-2312.e14.
doi: S0022-202X(19)31551-9 pmid: 31078570 |
[16] | ZHANG C, QIN Q, LI Y, et al. Multifactor dimensionality reduction reveals the effect of interaction between ERAP1 and IFIH1 polymorphisms in psoriasis susceptibility genes[J]. Front Genet, 2022, 13:1009589. |
[17] |
XU H, ZHEN Q, BAI M, et al. Deep sequencing of 1320 genes reveals the landscape of protein-truncating variants and their contribution to psoriasis in 19,973 Chinese individuals[J]. Genome Res, 2021, 31(7):1150-1158.
doi: 10.1101/gr.267963.120 pmid: 34155038 |
[18] | ZHEN Q, ZHANG Y, YU Y, et al. Three novel structural variations at the major histocompatibility complex and IL12B predispose to psoriasis[J]. Br J Dermatol, 2022, 186(2):307-317. |
[19] |
ZHOU F, CAO H, ZUO X, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease[J]. Nat Genet, 2016, 48(7):740-746.
doi: 10.1038/ng.3576 pmid: 27213287 |
[20] | LIU M, ZHANG G, WANG Z, et al. FOXE1 contributes to the development of psoriasis by regulating WNT5A[J]. J Invest Dermatol, 2023, 143(12):2366-2377.e7. |
[21] | GAO Y, NA M, YAO X, et al. Integrative single-cell transcriptomic investigation unveils long non-coding RNAs associated with localized cellular inflammation in psoriasis[J]. Front Immunol, 2023, 14:1265517. |
[22] |
TANG L, WANG M, SHEN C, et al. Assay for transposase-accessible chromatin using sequencing analysis reveals a widespread increase in chromatin accessibility in psoriasis[J]. J Invest Dermatol, 2021, 141(7):1745-1753.
doi: 10.1016/j.jid.2020.12.031 pmid: 33607116 |
[23] |
TSOI L C, SPAIN S L, KNIGHT J, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity[J]. Nat Genet, 2012, 44(12):1341-1348.
doi: 10.1038/ng.2467 pmid: 23143594 |
[24] | FURUE M, FURUE K, TSUJI G, et al. Interleukin-17A and keratinocytes in psoriasis[J]. Int J Mol Sci, 2020, 21(4):1275. |
[25] |
GRIFFITHS C E M, ARMSTRONG A W, GUDJONSSON J E, et al. Psoriasis[J]. Lancet, 2021, 397(10281):1301-1315.
doi: 10.1016/S0140-6736(20)32549-6 pmid: 33812489 |
[26] |
YAO Y, VENT-SCHMIDT J, MCGEOUGH M D, et al. Tr1 cells, but not Foxp3+ regulatory t cells, suppress NLRP3 inflammasome activation via an IL-10-dependent mechanism[J]. J Immunol, 2015, 195(2):488-497.
doi: 10.4049/jimmunol.1403225 pmid: 26056255 |
[27] | PAN Y, YOU Y, SUN L, et al. The STING antagonist H-151 ameliorates psoriasis via suppression of STING/NF-κB-mediated inflammation[J]. Br J Pharmacol, 2021, 178(24):4907-4922. |
[28] | MAO Y, GE H, CHEN W, et al. RasGRP1 influences imiquimod-induced psoriatic inflammation via T-cell activation in mice[J]. Int Immunopharmacol, 2023, 122:110590. |
[29] | GUO M, ZHUANG H, SU Y, et al. SIRT3 alleviates imiquimod-induced psoriatic dermatitis through deacetylation of XBP1s and modulation of TLR7/8 inducing IL-23 production in macrophages[J]. Front Immunol, 2023, 14:1128543. |
[30] | YU Y, CHEN W, LI B, et al. Cutaneous calcium/calmodulin-dependent protein kinase II-γ-positive sympathetic nerves secreting norepinephrine dictate psoriasis[J]. Adv Sci (Weinh), 2024, 11(23):e2306772. |
[31] | YONG L, YU Y, LI B, et al. Calcium/calmodulin-dependent protein kinase Ⅳ promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice[J]. Nat Commun, 2022, 13(1):4255. |
[32] |
XU J, LIU M, YU M, et al. RasGRP1 is a target for VEGF to induce angiogenesis and involved in the endothelial-protective effects of metformin under high glucose in HUVECs[J]. IUBMB Life, 2019, 71(9):1391-1400.
doi: 10.1002/iub.2072 pmid: 31120617 |
[33] | DOPYTALSKA K, CIECHANOWICZ P, WISZNIEWSKI K, et al. The role of epigenetic factors in psoriasis[J]. Int J Mol Sci, 2021, 22(17):9294. |
[34] |
FOGEL O, RICHARD-MICELI C, TOST J. Epigenetic changes in chronic inflammatory diseases[J]. Adv Protein Chem Struct Biol, 2017, 106:139-189.
doi: S1876-1623(16)30053-0 pmid: 28057210 |
[35] | MOUNSEY S J, KULAKOV E. Psoriasis[J]. Br J Hosp Med (Lond), 2018, 79(8):C114-C117. |
[36] |
CHEN M, WANG Y, YAO X, et al. Hypermethylation of HLA-C may be an epigenetic marker in psoriasis[J]. J Dermatol Sci, 2016, 83(1):10-16.
doi: 10.1016/j.jdermsci.2016.04.003 pmid: 27132688 |
[37] |
ZHANG P, SU Y, CHEN H, et al. Abnormal DNA methylation in skin lesions and PBMCs of patients with psoriasis vulgaris[J]. J Dermatol Sci, 2010, 60(1):40-42.
doi: 10.1016/j.jdermsci.2010.07.011 pmid: 20800455 |
[38] |
ZHANG P, ZHAO M, LIANG G, et al. Whole-genome DNA methylation in skin lesions from patients with psoriasis vulgaris[J]. J Autoimmun, 2013, 41:17-24.
doi: 10.1016/j.jaut.2013.01.001 pmid: 23369618 |
[39] |
ZONG W, GE Y, HAN Y, et al. Hypomethylation of HLA-DRB1 and its clinical significance in psoriasis[J]. Oncotarget, 2017, 8(7):12323-12332.
doi: 10.18632/oncotarget.12468 pmid: 27713139 |
[40] |
QIAO M, LI R, ZHAO X, et al. Up-regulated lncRNA-MSX2P1 promotes the growth of IL-22-stimulated keratinocytes by inhibiting miR-6731-5p and activating S100A7[J]. Exp Cell Res, 2018, 363(2):243-254.
doi: S0014-4827(18)30024-7 pmid: 29339075 |
[41] | 景志杰, 付明阳, 王春芳. 过表达miR-31及其下游靶基因Sfn、SuFu在银屑病动物模型中的作用[J]. 重庆医科大学学报, 2024, 49(11):1394-1401. |
JING Z J, FU M Y, WANG C F. Role of overexpression of microRNA-31 and its downstream target genesSfn and SuFu in animal models of psoriasis[J]. J Chongqing Med Univ, 2024, 49(11):1394-1401. | |
[42] | FENG H, WU R, ZHANG S, et al. Topical administration of nanocarrier miRNA-210 antisense ameliorates imiquimod-induced psoriasis-like dermatitis in mice[J]. J Dermatol, 2020, 47(2):147-154. |
[43] |
WU R, ZENG J, YUAN J, et al. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation[J]. J Clin Invest, 2018, 128(6):2551-2568.
doi: 10.1172/JCI97426 pmid: 29757188 |
[44] |
YAN J J, QIAO M, LI R H, et al. Downregulation of miR-145-5p contributes to hyperproliferation of keratinocytes and skin inflammation in psoriasis[J]. Br J Dermatol, 2019, 180(2):365-372.
doi: 10.1111/bjd.17256 pmid: 30269330 |
[45] | CHEN Y, XIANG Y, MIAO X, et al. METTL14 promotes IL-6-induced viability, glycolysis and inflammation in HaCaT cells via the m6A modification of TRIM27[J]. J Cell Mol Med, 2024, 28(3):e18085. |
[46] | XIAO Z, WANG S, TIAN Y, et al. METTL3-mediated m6A methylation orchestrates mRNA stability and dsRNA contents to equilibrate γδ T1 and γδ T17 cells[J]. Cell Rep, 2023, 42(7):112684. |
[47] | WANG Y, HUANG J, JIN H. Reduction of Methyltransferase-like 3-mediated RNA N6-methyladenosine exacerbates the development of psoriasis vulgaris in imiquimod-induced psoriasis-like mouse model[J]. Int J Mol Sci, 2022, 23(20):12672. |
[48] |
LIU L, JU M, HU Y, et al. Genome-wide DNA methylation and transcription analysis in psoriatic epidermis[J]. Epigenomics, 2023, 15(4):209-226.
doi: 10.2217/epi-2022-0458 pmid: 37158398 |
[49] | ZHOU F, WANG W, SHEN C, et al. Epigenome-wide association analysis identified nine skin dna methylation loci for psoriasis[J]. J Invest Dermatol, 2016, 136(4):779-787. |
[50] | ZHANG P, SU Y, ZHAO M, et al. Abnormal histone modifications in PBMCs from patients with psoriasis vulgaris[J]. Eur J Dermatol, 2011, 21(4):552-557. |
[51] | 张成, 梁波, 张莉, 等. 儿童玫瑰糠疹和寻常型银屑病皮肤镜特征分析[J]. 安徽医学, 2024, 45(05):570-573. |
ZHANG C, LIANG B, ZHANG L, et al. Analysis of dermatoscopic features of children with pityriasis rosea and psoriasis vulgaris[J]. Anhui Med J, 2024, 45(5):570-573. | |
[50] | 章鹏飞, 张正勇. 司库奇尤单抗及308 nm准分子光治疗中重度斑块型银屑病的短期疗效对比[J]. 安徽医学, 2023, 44(11):1319-1322. |
ZHANG PF, ZHANG ZY. Comparison of Short term Efficacy of Sikuximab and 308 nm Excimer Phototherapy for Moderate to Severe Plaque Psoriasis[J]. Anhui Med J, 2023, 44(11):1319-1322. |
[1] | 王刚, 齐金蕾, 刘馨雅, 任汝静, 林绍慧, 胡以松, 李海霞, 谢心怡, 王金涛, 李建平, 朱怡康, 高梦伊, 杨竣杰, 王怡然, 井玉荣, 耿介立, 支楠, 曹雯炜, 徐群, 余小萍, 朱圆, 周滢, 王琳, 高超, 李彬寅, 陈生弟, 袁芳, 窦荣花, 刘晓云, 李雪娜, 尹雅芙, 常燕, 徐刚, 辛佳蔚, 钟燕婷, 李春波, 王颖, 周脉耕, 陈晓春, 代表中国阿尔茨海默病报告编写组. 中国阿尔茨海默病报告2024[J]. 诊断学理论与实践, 2024, 23(03): 219-256. |
[2] | 黄睿, 饶慧瑛. “消除”背景下的丙型肝炎病毒感染现状及筛查、诊断对策[J]. 诊断学理论与实践, 2024, 23(01): 1-8. |
[3] | 史玉玲, 陈文娟. 银屑病共病的现状及诊治[J]. 诊断学理论与实践, 2023, 22(03): 221-229. |
[4] | 王泽洲, 郑莹. 1990年至2020年间全球及我国肺癌的发病流行趋势及防控措施[J]. 诊断学理论与实践, 2023, 22(01): 1-7. |
[5] | 梁晨, 于佳佳, 唐神结. 世界卫生组织《全球结核病报告2022》解读[J]. 诊断学理论与实践, 2023, 22(01): 21-30. |
[6] | 鲍萍萍, 吴春晓, 顾凯, 庞怡, 王春芳, 施亮, 向詠梅, 龚杨明, 窦剑明, 吴梦吟, 付晨, 施燕. 上海市2016年胃癌发病特征及2002年至2016年胃癌发病趋势分析[J]. 诊断学理论与实践, 2022, 21(04): 462-469. |
[7] | 付朝伟. 阿尔茨海默病重在预防——《中国阿尔茨海默病报告2021》解读[J]. 诊断学理论与实践, 2022, 21(01): 8-11. |
[8] | 史玉玲. 英国《皮肤科医师协会银屑病生物制剂治疗指南》(2020版)解读[J]. 诊断学理论与实践, 2021, 20(01): 37-42. |
[9] | 黄丹, 陈崑. 银屑病相关流行病学调查进展[J]. 诊断学理论与实践, 2021, 20(01): 48-52. |
[10] | 王娟, 李佳. 2017年至2018年上海地区男性尖锐湿疣患者人乳头瘤病毒感染的流行病学分析[J]. 诊断学理论与实践, 2020, 19(06): 572-576. |
[11] | 刘珊珊, 牛静雅, 王天歌, 李勉, 赵志云, 徐瑜, 陆洁莉, 徐敏, 毕宇芳, 张迪. 上海淞南社区2型糖尿病患者合并其他心血管代谢异常的现况流行病学调查[J]. 诊断学理论与实践, 2019, 18(03): 323-328. |
[12] | 林镇, 郭茹茹, 吕良敬, 陈晓翔. Fra2通过调节白细胞介素23受体参与银屑病发病的研究[J]. 诊断学理论与实践, 2018, 17(03): 254-259. |
[13] | 戴生明. 银屑病关节炎的危害、诊治现状[J]. 诊断学理论与实践, 2018, 17(03): 238-243. |
[14] | 王芳, 林见敏, 陈辉凤, 王金金, 张建林, 邓燕燕, 龚倩. 上海青浦2015年至2016年2 241例呼吸道感染患者9项常见病原体检出情况分析[J]. 诊断学理论与实践, 2018, 17(02): 207-210. |
[15] | 糜坚青, 金诗炜. 多发性骨髓瘤细胞分子遗传学异常与预后分层、治疗[J]. 诊断学理论与实践, 2017, 16(05): 460-463. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||