诊断学理论与实践 ›› 2019, Vol. 18 ›› Issue (2): 237-240.doi: 10.16150/j.1671-2870.2019.02.023
收稿日期:
2018-07-03
出版日期:
2019-04-25
发布日期:
2019-04-25
通讯作者:
顾爱华
E-mail:aihuagu@njmu.edu.cn
基金资助:
Received:
2018-07-03
Online:
2019-04-25
Published:
2019-04-25
中图分类号:
陈瑶瑶, 顾爱华. 氧化三甲胺与心血管疾病关系的研究进展[J]. 诊断学理论与实践, 2019, 18(2): 237-240.
[1] | Bayoumi AS, Aonuma T, Teoh JP, et al. Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases[J]. Acta Pharmacol Sin, 2018, 39(7):1100-1109. |
[2] | Brown JM, Hazen SL. Microbial modulation of cardiovascular disease[J]. Nat Rev Microbiol, 2018, 16(3):171-181. |
[3] | Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association[J]. Circulation, 2015, 131(4):e29-e322. |
[4] | Kertai MD, Li YJ, Li YW, et al. Genome-wide association study of perioperative myocardial infarction after coronary artery bypass surgery[J]. BMJ Open, 2015, 5(5):e006920. |
[5] | Myocardial Infarction Genetics Consortium, Kathiresan S, Voight BF, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants[J]. Nat Genet, 2009, 41(3):334-341. |
[6] | CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, et al. Large-scale association analysis identifies new risk loci for coronary artery disease[J]. Nat Genet, 2013, 45(1):25-33. |
[7] | Aron-Wisnewsky J, Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders[J]. Nat Rev Nephrol, 2016, 12(3):169-181. |
[8] | Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004, 101(44):15718-15723. |
[9] | Kasselman LJ, Vernice NA, DeLeon J, et al. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity[J]. Atherosclerosis, 2018, 271:203-213. |
[10] | Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis[J]. Nat Med, 2013, 19(5):576-585. |
[11] | Trenteseaux C, Gaston AT, Aguesse A, et al. Perinatal Hypercholesterolemia Exacerbates Atherosclerosis Lesions in Offspring by Altering Metabolism of Trimethylamine-N-Oxide and Bile Acids[J]. Arterioscler Thromb Vasc Biol, 2017, 37(11):2053-2063. |
[12] | Zeisel SH, Warrier M. Trimethylamine N-Oxide the Microbiome, and Heart and Kidney Disease[J]. Annu Rev Nutr, 2017, 37:157-181. |
[13] | Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regu-lation[J]. Cell Metab, 2013, 17(1):49-60. |
[14] | Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic disea-ses[J]. Annu Rev Med, 2015, 66:343-359. |
[15] | Fennema D, Phillips IR, Shephard EA. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease[J]. Drug Metab Dispos, 2016, 44(11):1839-1850. |
[16] | Yancey PH, Rhea MD, Kemp KM, et al. Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure[J]. Cell Mol Biol (Noisy-le-grand), 2004, 50(4):371-376. |
[17] | Organ CL, Otsuka H, Bhushan S, et al. Choline Diet and Its Gut Microbe-Derived Metabolite, Trimethylamine N-Oxide, Exacerbate Pressure Overload-Induced Heart Fai-lure[J]. Circ Heart Fail, 2016, 9(1):e002314. |
[18] | Sheard NF, Zeisel SH. An in vitro study of choline uptake by intestine from neonatal and adult rats[J]. Pediatr Res, 1986, 20(8):768-772. |
[19] | Koeth RA, Levison BS, Culley MK, et al. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO[J]. Cell Metab, 2014, 20(5):799-812. |
[20] | Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472(7341):57-63. |
[21] | Hernandez D, Janmohamed A, Chandan P, et al. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: identification of novel gene and pseudogene clusters[J]. Pharmacogenetics, 2004, 14(2):117-130. |
[22] | Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism[J]. Pharmacol Ther, 2005, 106(3):357-387. |
[23] | Ferreira F, Esteves S, Almeida LS, et al. Trimethylaminuria (fish odor syndrome): genotype characterization among Portuguese patients[J]. Gene, 2013, 527(1):366-370. |
[24] | Gao C, Catucci G, Castrignanò S, et al. Inactivation mechanism of N61S mutant of human FMO3 towards trimethylamine[J]. Sci Rep, 2017, 7(1):14668. |
[25] | Ufnal M, Zadlo A, Ostaszewski R. TMAO: A small molecule of great expectations[J]. Nutrition, 2015, 31(11-12):1317-1323. |
[26] | Cho CE, Caudill MA. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire?[J]. Trends Endocrinol Metab, 2017, 28(2):121-130. |
[27] | Zhang AQ, Mitchell SC, Smith RL. Dietary precursors of trimethylamine in man: a pilot study[J]. Food Chem Toxicol, 1999, 37(5):515-520. |
[28] | Zheng Y, Li Y, Rimm EB, et al. Dietary phosphatidylcholine and risk of all-cause and cardiovascular-specific mortality among US women and men[J]. Am J Clin Nutr, 2016, 104(1):173-180. |
[29] | Ufnal M, Jazwiec R, Dadlez M, et al. Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats[J]. Can J Cardiol, 2014, 30(12):1700-1705. |
[30] | Liu M, Han Q, Yang J. Trimethylamine-N-oxide (TMAO) increased aquaporin-2 expression in spontaneously hypertensive rats[J/OL]. Clin Exp Hypertens, 2018-07-09[2018-07-03]https://www.ncbi.nlm.nih.gov/pubmed/29985655. |
[31] | Tang WH, Wang Z, Shrestha K, et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure[J]. J Card Fail, 2015, 21(2):91-96. |
[32] | Trøseid M, Ueland T, Hov JR, et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure[J]. J Intern Med, 2015, 277(6):717-726. |
[33] | Schugar RC, Brown JM. Emerging roles of flavin monooxygenase 3 in cholesterol metabolism and atherosclerosis[J]. Curr Opin Lipidol, 2015, 26(5):426-431. |
[34] | Stender S, Frikke-Schmidt R, Nordestgaard BG, et al. The ABCG5/8 cholesterol transporter and myocardial infarction versus gallstone disease[J]. J Am Coll Cardiol, 2014, 63(20):2121-2128. |
[35] | Warrier M, Shih DM, Burrows AC, et al. The TMAO-Generating Enzyme Flavin Monooxygenase 3 Is a Central Regulator of Cholesterol Balance[J/OL]. Cell Rep, 2015-01-14[2018-07-03].https://www.ncbi.nlm.nih.gov/pubmed/25600868. |
[36] | Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice[J]. J Clin Invest, 2000, 105(8):1049-1056. |
[37] | Suzuki H, Kurihara Y, Takeya M, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection[J]. Nature, 1997, 386(6622):292-296. |
[38] | Makrecka-Kuka M, Volska K, Antone U, et al. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria[J]. Toxicol Lett, 2017, 267:32-38. |
[39] | Shimizu M, Cashman JR, Yamazaki H. Transient trimethylaminuria related to menstruation[J]. BMC Med Genet, 2007, 8:2. |
[40] | Gao X, Liu X, Xu J, et al. Dietary trimethylamine N-oxi-de exacerbates impaired glucose tolerance in mice fed a high fat diet[J]. J Biosci Bioeng, 2014, 118(4):476-481. |
[41] | Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161):967-970. |
[42] | Lever M, George PM, Slow S, et al. Betaine and Trimethylamine-N-Oxide as Predictors of Cardiovascular Outcomes Show Different Patterns in Diabetes Mellitus: An Observational Study[J]. PLoS One, 2014, 9(12):e114969. |
[43] | Tang WH, Wang Z, Kennedy DJ, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease[J]. Circ Res, 2015, 116(3):448-455. |
[1] | 许飞, 尹明月, 王伟, 董治亚, 陆文丽, 余熠, 王歆琼, 王俊祺, 肖园. 性早熟女童肠道菌群和抗生素耐药性的宏基因组分析[J]. 诊断学理论与实践, 2022, 21(01): 52-61. |
[2] | 施仲伟. 回眸过去30年全球和中国的心血管疾病负担及其危险因素——1990年至2019年全球心血管疾病负担及其危险因素报告解读[J]. 诊断学理论与实践, 2021, 20(04): 349-355. |
[3] | 李林, 安静静, 王俊祺, 王歆琼, 董治亚. 16S rRNA第二代测序技术分析特发性身材矮小儿童肠道菌群构成的特征及相关发病机制研究[J]. 诊断学理论与实践, 2021, 20(02): 149-154. |
[4] | 李惠, 冯洁, 韩立中. 高通量测序技术分析无特定病原体级实验小鼠肠道的菌群组成[J]. 诊断学理论与实践, 2020, 19(1): 55-62. |
[5] | 吴歆, 耿旭强, 徐沪济. 多基因风险评分在复杂性状疾病中的应用进展[J]. 诊断学理论与实践, 2020, 19(05): 540-543. |
[6] | 安静静, 王俊祺, 肖园, 陆文丽, 李林, 王伟, 董治亚. 16S rRNA高通量测序分析肠道菌群对小于胎龄大鼠生长追赶的影响及其可能的机制[J]. 诊断学理论与实践, 2020, 19(04): 375-380. |
[7] | 倪瀚文, 吴立群. 外泌体在心肌缺血及房颤诊治中的应用前景研究进展[J]. 诊断学理论与实践, 2020, 19(02): 199-202. |
[8] | 汪婷婷, 郑乃盛, 袁向亮, 沈立松. 基于16S rRNA高通量测序技术分析小鼠实验性结肠炎肠道菌群结构特征[J]. 诊断学理论与实践, 2019, 18(03): 263-270. |
[9] | 华沙, 赵建荣,. 载脂蛋白A5调节三酰甘油代谢及其对心血管疾病影响[J]. 诊断学理论与实践, 2014, 13(03): 336-340. |
[10] | 庞小芬, 高丽红,. 老年骨质疏松症与心血管疾病相关性的认识[J]. 诊断学理论与实践, 2012, 11(01): 15-18. |
[11] | 方怡, 陈芳源,. 组织因子微粒的研究进展[J]. 诊断学理论与实践, 2011, 10(06): 563-566. |
[12] | 张一帆, 尹红燕,. 干细胞治疗缺血性心脏病分子显像的机遇和挑战[J]. 诊断学理论与实践, 2011, 10(01): 18-21. |
[13] | 刘玉清,. 不断提高心血管影像学诊断水平的几点意见[J]. 诊断学理论与实践, 2011, 10(01): 1-. |
[14] | 俞芸, 李月华,. 双源CT在心血管疾病诊断中的应用[J]. 诊断学理论与实践, 2009, 8(04): 435-438. |
[15] | 邹大进, 田建卿,. 胰岛素抵抗与心血管疾病的关系[J]. 诊断学理论与实践, 2009, 8(03): 252-255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||