诊断学理论与实践 ›› 2022, Vol. 21 ›› Issue (03): 326-330.doi: 10.16150/j.1671-2870.2022.03.006
收稿日期:
2022-01-04
出版日期:
2022-06-25
发布日期:
2022-08-17
通讯作者:
周建桥
E-mail:zhousu30@126.com
DU Yanran1, JIAO Jing2, REN Yunyun3, ZHOU Jianqiao1()
Received:
2022-01-04
Online:
2022-06-25
Published:
2022-08-17
Contact:
ZHOU Jianqiao
E-mail:zhousu30@126.com
摘要:
目的:基于超声影像组学技术,建立胎肺成熟度评估模型,并验证其预测新生儿发生呼吸系统疾病风险的价值。方法:本研究纳入295名孕妇(单胎),每位孕妇收集1张分娩前72 h内采集的胎肺超声标准图像(四腔心切面)。依据收集胎肺超声图像当天的孕周,将295名孕妇图像分为组1(<36周)和组2(36~37周)。组1(66张)和组2图像(229张)再进一步分别分组为训练集(40、26张)和验证集(95、134张)。基于超声影像组学技术,对训练集胎肺超声图像进行胎肺纹理分析,结合妊娠并发症的有无,提取高通量影像组学特征,以新生儿预后结果为金标准,分别建立适用于不同孕周的胎肺成熟度评估模型,随后在相应的验证集中,验证胎肺成熟度模型预测新生儿发生呼吸系统疾病的风险。结果:本研究新生儿中,23.4%(69例)发生了呼吸系统疾病,6.1%(18例)发生了新生儿呼吸窘迫综合征。基于<36周和36~37孕周的胎肺成熟度模型,预测相应孕周的灵敏度分别为83.3%(组1)和75.0%(组2),特异度为84.6%(组1)和78.3%(组2);准确率为80.8%(组1)和77.2%(组2)。结论:基于超声影像组学技术胎肺成熟度评估模型具有一定的预测新生儿发生呼吸系统疾病的效能,这是无创性评估胎肺成熟度的一种新方法。
中图分类号:
杜燕然, 焦景, 任芸芸, 周建桥. 超声影像组学技术在评估胎肺成熟度中的应用[J]. 诊断学理论与实践, 2022, 21(03): 326-330.
DU Yanran, JIAO Jing, REN Yunyun, ZHOU Jianqiao. Application of ultrasound-based radiomics technology in the evaluation of fetal lung maturity[J]. Journal of Diagnostics Concepts & Practice, 2022, 21(03): 326-330.
[1] | Teune MJ, Bakhuizen S, Gyamfi Bannerman C, et al. A systematic review of severe morbidity in infants born late preterm[J]. Am J Obstet Gynecol, 2011, 205(4):374,e1-e9. |
[2] |
Spong CY, Mercer BM, D′Alton M, et al. Timing of indicated late-preterm and early-term birth[J]. Obstet Gynecol, 2011, 118(2 Pt 1):323-333.
doi: 10.1097/AOG.0b013e3182255999 URL |
[3] | Clark SL, Miller DD, Belfort MA, et al. Neonatal and maternal outcomes associated with elective term delivery[J]. Am J Obstet Gynecol, 2009, 200(2):156,e1-e4. |
[4] | Sengupta S, Carrion V, Shelton J, et al. Adverse neonatal outcomes associated with early-term birth[J]. JAMA Pe-diatr, 2013, 167(11):1053-1059. |
[5] |
Serizawa M, Maeda K. Noninvasive fetal lung maturity prediction based on ultrasonic gray level histogram width[J]. Ultrasound Med Biol, 2010, 36(12):1998-2003.
doi: 10.1016/j.ultrasmedbio.2010.08.011 pmid: 20950934 |
[6] |
Prakash KN, Ramakrishnan AG, Suresh S, et al. Fetal lung maturity analysis using ultrasound image features[J]. IEEE Trans Inf Technol Biomed, 2002, 6(1):38-45.
doi: 10.1109/4233.992160 URL |
[7] |
Cosmi EV, Anceschi MM, Cosmi E, et al. Ultrasonographic patterns of fetal breathing movements in normal pregnancy[J]. Int J Gynaecol Obstet, 2003, 80(3):285-290.
doi: 10.1016/S0020-7292(02)00384-3 URL |
[8] |
Maeda K, Utsu M, Yamamoto N, et al. Echogenicity of fetal lung and liver quantified by the grey-level histogram width[J]. Ultrasound Med Biol, 1999, 25(2):201-208.
pmid: 10320309 |
[9] | La Torre R, Cosmi E, Anceschi MH, et al. Preliminary report on a new and noninvasive method for the assessment of fetal lung maturity[J]. J Perinat Med, 2003, 31(5):431-434. |
[10] |
Insana MF, Garra BS, Rosenthal SJ, et al. Quantitative ultrasonography[J]. Med Prog Technol, 1989, 15(3-4):141-153.
pmid: 2533654 |
[11] |
Sanz-Cortés M, Figueras F, Bonet-Carne E, et al. Fetal brain MRI texture analysis identifies different microstructural patterns in adequate and small for gestational age fetuses at term[J]. Fetal Diagn Ther, 2013, 33(2):122-129.
doi: 10.1159/000346566 pmid: 23391747 |
[12] |
Du Y, Fang Z, Jiao J, et al. Application of ultrasound-based radiomics technology in fetal-lung-texture analysis in pregnancies complicated by gestational diabetes and/or pre-eclampsia[J]. Ultrasound Obstet Gynecol, 2021, 57(5):804-812.
doi: 10.1002/uog.22037 URL |
[13] |
Tekesin I, Anderer G, Hellmeyer L, et al. Assessment of fetal lung development by quantitative ultrasonic tissue characterization: a methodical study[J]. Prenat Diagn, 2004, 24(9):671-676.
doi: 10.1002/pd.951 URL |
[14] | Palacio M, Bonet-Carne E, Cobo T, et al. Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: a multicenter study[J]. Am J Obstet Gynecol, 2017, 217(2):196,e1-e14. |
[15] |
Ahmed B, Konje JC. Fetal lung maturity assessment: A historic perspective and Non - invasive assessment using an automatic quantitative ultrasound analysis (a potentially useful clinical tool)[J]. Eur J Obstet Gynecol Reprod Biol, 2021, 258:343-347.
doi: 10.1016/j.ejogrb.2021.01.025 URL |
[16] | Sengupta S, Carrion V, Shelton J, et al. Adverse neonatal outcomes associated with early-term birth[J]. JAMA Pe-diatr, 2013, 167(11):1053-1059. |
[17] |
Edwards MO, Kotecha SJ, Kotecha S. Respiratory distress of the term newborn infant[J]. Paediatr Respir Rev, 2013, 14(1):29-37.
doi: 10.1016/j.prrv.2012.02.002 pmid: 23347658 |
[18] | Tita ATN, Jablonski KA, Bailit JL, et al. Neonatal outcomes of elective early-term births after demonstrated fetal lung maturity[J]. Am J Obstet Gynecol, 2018, 219(3):296. |
[19] |
Spong CY, Mercer BM, D′Alton M, et al. Timing of indicated late-preterm and early-term birth[J]. Obstet Gynecol, 2011, 118(2 Pt 1):323-333.
doi: 10.1097/AOG.0b013e3182255999 URL |
[20] |
ACOG Committee Opinion No. 764 Summary: Medically Indicated Late-Preterm and Early-Term Deliveries[J]. Obstet Gynecol, 2019, 133(2):400-403.
doi: 10.1097/AOG.0000000000003084 URL |
[21] |
Towers CV, Freeman RK, Nageotte MP, et al. The case for amniocentesis for fetal lung maturity in late-preterm and early-term gestations[J]. Am J Obstet Gynecol, 2014, 210(2):95-96.
doi: 10.1016/j.ajog.2013.10.004 pmid: 24139938 |
[22] | Simon AE, Uddin SG. National trends in primary cesa-rean delivery, labor attempts, and labor success, 1990-2010[J]. Am J Obstet Gynecol,2013, 209(6):554,e1-e8. |
[1] | 王晓妍, 潘丽娜, 高蓓莉, 徐志红, 胡家安. 影像组学及影像基因组学在肺癌诊疗中的应用进展[J]. 诊断学理论与实践, 2019, 18(06): 711-714. |
[2] | 王鸿利. 同型半胱氨酸的检测及其应用[J]. 诊断学理论与实践, 2002, 1(04): 53-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||