Journal of Diagnostics Concepts & Practice ›› 2019, Vol. 18 ›› Issue (04): 402-411.doi: 10.16150/j.1671-2870.2019.04.005
• Original articles • Previous Articles Next Articles
YANG Chihui1,2, ZHANG Jing1, MENG Leijun3, GONG Liping4, CHANG Qing5, ZHANG Hong3(), ZENG Naiyan1(
)
Received:
2018-10-22
Online:
2019-08-25
Published:
2019-08-25
Contact:
ZHANG Hong,ZENG Naiyan
E-mail:zhanghong3010@126.com;zengny@shsmu.edu.cn
CLC Number:
YANG Chihui, ZHANG Jing, MENG Leijun, GONG Liping, CHANG Qing, ZHANG Hong, ZENG Naiyan. Screening and identification of clinical molecular targets in papillary thyroid cancers[J]. Journal of Diagnostics Concepts & Practice, 2019, 18(04): 402-411.
基因 | 引物 | 序列(5'→3') | 扩增子长 度(bp) |
---|---|---|---|
A20 | 正向 反向 | AGGTTCCAGAACACCATTCC GGCTCGATCTCAGTTGCTC | 151 |
ABIN-1 | 正向 反向 | GAAGCAAGTGGAGAAGCTGC CTCTCCTGAGGCCTTTGCT | 127 |
ABIN-2 | 正向 反向 | GCAGATTCTCGCTTACAAGGA TCCTGTCTCCAGGACACCT | 126 |
ABIN-3 | 正向 反向 | CGCCTCAATAAGGCTCTTCA GCACCTGCTGCTTCAGAAC | 133 |
BCL2 | 正向 反向 | GATAACGGAGGCTGGGATG AGCCAGGAGAAATCAAACAGAG | 74 |
CCND2 | 正向 反向 | CTGGCCTCCAAACTCAAAGAG GCACCACCAGTTCCCACTC | 109 |
CD44 | 正向 反向 | CAGCTCCACCTGAAGAAGATTG GGTGCCATCACGGTTAACAA | 95 |
c-FLIP | 正向 反向 | GACCTGCTCAAACGTATCTTGAAG CTCTGCCATCAGCACTCTATAGTC | 102 |
IRF4 | 正向 反向 | CTTTGAGGAACTGGTTGAGCG GCTGCTTGGCTCCTTTTTTG | 98 |
病例号 | CD44 | Cyclin D2 | BCL2 | |||||
---|---|---|---|---|---|---|---|---|
NAT | PTC | NAT | PTC | NAT | PTC | |||
2 | + | - | + | - | ++/+++ | + | ||
+ | + | ++/+++ | +/++ | |||||
9 | + | +++ | -/+ | ++/+++ | ++/- | ++/+/- | ||
10 | + | +++ | + | ++/+++ | +/- | ++/+++ | ||
11 | + | +++ | + | ++/+++ | ++/+++ | ++/+++ | ||
12 | + | ++ | + | ++/+++ | ++/+++ | ++/+++ | ||
13 | + | ++/+++ | + | ++/+++ | ++/+++ | ++/+++ | ||
14 | + | +++ | + | ++ | ++/+++ | ++/+++ | ||
15 | + | +++ | + | ++ | ++/+++ | ++/+++ | ||
16 | + | +++ | + | +++ | ++/+++ | ++/+++ | ||
17 | + | ++ | + | +++ | ++/+++ | ++/+++ | ||
18 | + | +++ | + | +++ | ++/+++ | -/+ |
病例号 | 组织 | 组织类型 | qPCR检测 BRAF V600 | NGS检测 BRAF V600 | 突变类型 | 病例号 | 组织 | 组织类型 | qPCR检测 BRAF V600 | NGS检测 BRAF V600 | 突变类型 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 甲状腺 | NAT | 谷氨酸 | 谷氨酸# | GM | 11 | 甲状腺 | PTC | 谷氨酸 | - | SM |
PTC | 谷氨酸 | 谷氨酸# | 淋巴结 | NAT | 缬氨酸 | - | |||||
3 | 甲状腺 | NAT | 缬氨酸 | - | SM | PTC | 谷氨酸 | - | |||
PTC | 谷氨酸 | - | 12 | 甲状腺 | NAT | 缬氨酸 | - | SM | |||
4 | 甲状腺 | NAT | 缬氨酸 | - | SM | PTC | 谷氨酸 | - | |||
PTC | 谷氨酸 | - | 13 | 甲状腺 | NAT | 缬氨酸 | - | wt | |||
5 | 甲状腺 | NAT | 缬氨酸 | 缬氨酸 | SM | PTC | 缬氨酸 | - | |||
PTC | 谷氨酸 | 谷氨酸 | 15 | 甲状腺 | PTC | 谷氨酸 | - | M | |||
6 | 淋巴结 | NAT | 缬氨酸 | - | SM | 16 | 甲状腺 | NAT | 谷氨酸 | 谷氨酸 | GM |
PTC | 谷氨酸 | - | PTC | 谷氨酸 | 谷氨酸 | ||||||
8 | 甲状腺 | NAT | 缬氨酸 | 缬氨酸 | SM | 17 | 甲状腺 | NAT | 缬氨酸 | - | SM |
PTC | 缬氨酸 | 谷氨酸 | PTC | 谷氨酸 | - | ||||||
9 | 甲状腺 | NAT | 缬氨酸 | - | wt | 18 | 甲状腺 | PTC | 缬氨酸 | - | wt |
PTC | 缬氨酸 | - | 19 | 甲状腺 | NAT | 缬氨酸 | - | SM | |||
10 | 甲状腺 | NAT | 谷氨酸 | - | GM | PTC | 谷氨酸 | - | |||
PTC | 谷氨酸 | 谷氨酸 | 20 | 甲状腺 | NAT | 谷氨酸 | - | GM | |||
PTC | 谷氨酸 | - |
[1] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132.
doi: 10.3322/caac.21338 URL |
[2] |
Sherman SI. Thyroid carcinoma[J]. Lancet, 2003, 361(9356):501-511.
doi: 10.1016/s0140-6736(03)12488-9 pmid: 12583960 |
[3] |
Lim H, Devesa SS, Sosa JA, et al. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974-2013[J]. JAMA, 2017, 317(13):1338-1348.
doi: 10.1001/jama.2017.2719 URL |
[4] |
Sipos JA, Mazzaferri EL. The therapeutic management of differentiated thyroid cancer[J]. Expert Opin Pharmacother, 2008, 9(15):2627-2637.
doi: 10.1517/14656566.9.15.2627 URL |
[5] |
Albores-Saavedra J, Henson DE, Glazer E, et al. Chan-ging patterns in the incidence and survival of thyroid cancer with follicular phenotype--papillary, follicular, and anaplastic: a morphological and epidemiological study[J]. Endocr Pathol, 2007, 18(1):1-7.
pmid: 17652794 |
[6] |
O'Neill CJ, Oucharek J, Learoyd D, et al. Standard and emerging therapies for metastatic differentiated thyroid cancer[J]. Oncologist, 2010, 15(2):146-156.
doi: 10.1634/theoncologist.2009-0190 URL |
[7] |
Chen H, Luthra R, Routbort MJ, et al. Molecular Profile of Advanced Thyroid Carcinomas by Next-Generation Sequencing: Characterizing Tumors Beyond Diagnosis for Targeted Therapy[J]. Mol Cancer Ther, 2018, 17(7):1575-1584.
doi: 10.1158/1535-7163.MCT-17-0871 pmid: 29695638 |
[8] |
Hunt J. Understanding the genotype of follicular thyroid tumors[J]. Endocr Pathol, 2005, 16(4):311-321.
doi: 10.1385/EP:16:4:311 URL |
[9] | Nikiforova MN, Wald AI, Roy S, et al. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer[J]. J Clin Endocrinol Metab, 2013, 98(11):E1852-E1860. |
[10] |
Elisei R, Ugolini C, Viola D, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study[J]. J Clin Endocrinol Metab, 2008, 93(10):3943-3949.
doi: 10.1210/jc.2008-0607 URL |
[11] |
Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications[J]. Endocr Rev, 2007, 28(7):742-762.
doi: 10.1210/er.2007-0007 URL |
[12] |
Kebebew E, Weng J, Bauer J, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer[J]. Ann Surg, 2007, 246(3):466-470.
doi: 10.1097/SLA.0b013e318148563d URL |
[13] |
O'Neill CJ, Bullock M, Chou A, et al. BRAF(V600E) mutation is associated with an increased risk of nodal recurrence requiring reoperative surgery in patients with papillary thyroid cancer[J]. Surgery, 2010, 148(6):1139-1145.
doi: 10.1016/j.surg.2010.09.005 URL |
[14] |
Riesco-Eizaguirre G, Gutiérrez-Martínez P, García-Cabezas MA, et al. The oncogene BRAF V600E is associated with a high risk of recurrence and less differentia-ted papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane[J]. Endocr Relat Cancer, 2006, 13(1):257-269.
doi: 10.1677/erc.1.01119 URL |
[15] |
Durante C, Puxeddu E, Ferretti E, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism[J]. J Clin Endocrinol Metab, 2007, 92(7):2840-2843.
doi: 10.1210/jc.2006-2707 URL |
[16] |
Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer[J]. Nature, 2004, 431(7007):461-466.
doi: 10.1038/nature02924 URL |
[17] |
Xue X, Zeng N, Gao Z, et al. Diffuse large B-cell lymphoma: sub-classification by massive parallel quantitative RT-PCR[J]. Lab Invest, 2015, 95(1):113-120.
doi: 10.1038/labinvest.2014.136 URL |
[18] |
Pan LX, Diss TC, Peng HZ, et al. Clonality analysis of defined B-cell populations in archival tissue sections usi-ng microdissection and the polymerase chain reaction[J]. Histopathology, 1994, 24(4):323-327.
pmid: 8045521 |
[19] |
Nanda SK, Venigalla RK, Ordureau A, et al. Polyubiquitin binding to ABIN1 is required to prevent autoimmunity[J]. J Exp Med, 2011, 208(6):1215-1228.
doi: 10.1084/jem.20102177 URL |
[20] |
Takano T, Sumizaki H, Nakano K, et al. Increased expression of CD44 variants in differentiated thyroid cancers[J]. Jpn J Cancer Res, 1996, 87(12):1245-1250.
pmid: 9045959 |
[21] |
Orian-Rousseau V, Chen L, Sleeman JP, et al. CD44 is required for two consecutive steps in HGF/c-Met signa-ling[J]. Genes Dev, 2002, 16(23):3074-3086.
doi: 10.1101/gad.242602 URL |
[22] |
Samant RS, Clark DW, Fillmore RA, et al. Breast cancer metastasis suppressor 1 (BRMS1) inhibits osteopontin transcription by abrogating NF-kappaB activation[J]. Mol Cancer, 2007, 6:6.
doi: 10.1186/1476-4598-6-6 URL |
[23] |
Bourguignon LY, Shiina M, Li JJ. Hyaluronan-CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression[J]. Adv Cancer Res, 2014, 123:255-275.
doi: 10.1016/B978-0-12-800092-2.00010-1 pmid: 25081533 |
[24] |
Misra S, Hascall VC, Berger FG, et al. Hyaluronan, CD44, and cyclooxygenase-2 in colon cancer[J]. Connect Tissue Res, 2008, 49(3):219-224.
doi: 10.1080/03008200802143356 URL |
[25] |
Sacks JD, Barbolina MV. Expression and Function of CD44 in Epithelial Ovarian Carcinoma[J]. Biomolecules, 2015, 5(4):3051-3066.
doi: 10.3390/biom5043051 URL |
[26] |
Fan Z, Cui H, Xu X, et al. MiR-125a suppresses tumor growth, invasion and metastasis in cervical cancer by targeting STAT3[J]. Oncotarget, 2015, 6(28):25266-25280.
doi: 10.18632/oncotarget.4457 URL |
[27] |
Schmidt BA, Rose A, Steinhoff C, et al. Up-regulation of cyclin-dependent kinase 4/cyclin D2 expression but down-regulation of cyclin-dependent kinase 2/cyclin E in testicular germ cell tumors[J]. Cancer Res, 2001, 61(10):4214-4221.
pmid: 11358847 |
[28] |
Bartkova J, Thullberg M, Slezak P, et al. Aberrant expression of G1-phase cell cycle regulators in flat and exo-phytic adenomas of the human colon[J]. Gastroenterology, 2001, 120(7):1680-1688.
pmid: 11375949 |
[29] |
Shan YS, Hsu HP, Lai MD, et al. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer[J]. Oncol Lett, 2017, 14(4):4517-4526.
doi: 10.3892/ol.2017.6736 URL |
[30] |
Khanna V, Eide CA, Tognon CE, et al. Recurrent cyclin D2 mutations in myeloid neoplasms[J]. Leukemia, 2017, 31(9):2005-2008.
doi: 10.1038/leu.2017.195 pmid: 28630439 |
[31] |
Wang L, Cui Y, Zhang L, et al. The Silencing of CCND2 by Promoter Aberrant Methylation in Renal Cell Cancer and Analysis of the Correlation between CCND2 Methylation Status and Clinical Features[J]. PLoS One, 2016, 11(9):e0161859.
doi: 10.1371/journal.pone.0161859 URL |
[32] |
Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma[J]. Cancer Res, 2003, 63(7):1454-1457.
pmid: 12670889 |
[33] |
Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma[J]. J Natl Cancer Inst, 2003, 95(8):625-627.
doi: 10.1093/jnci/95.8.625 URL |
[34] |
Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer[J]. J Clin Invest, 2005, 115(1):94-101.
doi: 10.1172/JCI23237 URL |
[35] |
Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer[J]. N Engl J Med, 2013, 368(7):623-632.
doi: 10.1056/NEJMoa1209288 URL |
[36] |
Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer[J]. J Clin Endocrinol Metab, 2005, 90(12):6373-6379.
doi: 10.1210/jc.2005-0987 URL |
[37] | Sabra MM, Dominguez JM, Grewal RK, et al. Clinical outcomes and molecular profile of differentiated thyroid cancers with radioiodine-avid distant metastases[J]. J Clin Endocrinol Metab, 2013, 98(5):E829-E836. |
[38] | COSMIC. Complete Data for Gene-ALK[DB/OL]. [2019-05-17]. https://cancer.sanger.ac.uk/cosmic/gene/samples?all_data=&coords=AA%3AAA&dr=&end=1621&gd=&id=50&ln=ALK&mut_pie1=CzG&seqlen=1621&src=gene&start=1. |
[39] | Ahmad I, Iwata T, Leung HY. Mechanisms of FGFR-mediated carcinogenesis[J]. Biochim Biophys Acta, 2012, 1823(4):850-860. |
[40] |
Dienstmann R, Rodon J, Prat A, et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors[J]. Ann Oncol, 2014, 25(3):552-563.
doi: S0923-7534(19)34258-9 pmid: 32018766 |
[41] |
Kelleher FC, O'Sullivan H, Smyth E, et al. Fibroblast growth factor receptors, developmental corruption and malignant disease[J]. Carcinogenesis, 2013, 34(10):2198-2205.
doi: 10.1093/carcin/bgt254 pmid: 23880303 |
[42] | COSMIC. Complete Data for Gene-FGFR3[DB/OL]. [2019-05-17]. https://cancer.sanger.ac.uk/cosmic/gene/samples?all_data=&coords=AA%3AAA&dr=&end=807&gd=&id=9&ln=FGFR3&mut_pie1=AzG&seqlen=807&src=gene&start=1. |
[43] | My Cancer Genome. KIT[DB/OL]. [2019-05-17]. https://www.mycancergenome.org/content/gene/kit/. |
[44] |
Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor[J]. J Clin Oncol, 2003, 21(23):4342-4349.
pmid: 14645423 |
[45] |
Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors[J]. Science, 1998, 279(5350):577-580.
doi: 10.1126/science.279.5350.577 pmid: 9438854 |
[46] | NCBI ClinVar. NM_000222.2(KIT):c.1648_1674del27 (p.Lys550_Lys558del) Variation Report[DB/OL]. [2019-05-17]. https://www.ncbi.nlm.nih.gov/clinvar/variation/13857/. |
[47] |
Cabanillas ME, Habra MA. Lenvatinib: Role in thyroid cancer and other solid tumors[J]. Cancer Treat Rev, 2016, 42:47-55.
doi: 10.1016/j.ctrv.2015.11.003 pmid: 26678514 |
[48] | My Cancer Genome. MYC[DB/OL]. [2019-05-17]. https://www.mycancergenome.org/content/gene/myc/. |
[49] | NCBI ClinVar. NM_002467.5(MYC):c.218C>T (p.Thr73Ile) Variation Report[DB/OL]. [2019-05-17]. https://www.ncbi.nlm.nih.gov/clinvar/variation/376300/. |
[50] |
Han B, Cui H, Kang L, et al. Metformin inhibits thyroid cancer cell growth, migration, and EMT through the mTOR pathway[J]. Tumour Biol, 2015, 36(8):6295-6304.
doi: 10.1007/s13277-015-3315-4 URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||