[1] |
DESAI C, MAVRIANOS J, CHAUHAN N. Candida glabrata Pwp7p and Aed1p are required for adherence to human endothelial cells[J]. FEMS Yeast Res, 2011, 11(7):595-601.
doi: 10.1111/j.1567-1364.2011.00743.x
pmid: 21726406
|
[2] |
VALOTTEAU C, PRYSTOPIUK V, CORMACK B P, et al. Atomic force microscopy demonstrates that Candida glabrata uses three Epa proteins to mediate adhesion to abiotic surfaces[J]. mSphere, 2019, 4(3):e00277-e00219.
|
[3] |
ALEXANDER B D, JOHNSON M D, PFEIFFER C D, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations[J]. Clin Infect Dis, 2013, 56(12):1724-1732.
doi: 10.1093/cid/cit136
pmid: 23487382
|
[4] |
GALOCHA M, PAIS P, CAVALHEIRO M, et al. Divergent approaches to virulence in C. albicans and C. glabrata: two sides of the same coin[J]. Int J Mol Sci, 2019, 20(9):2345.
|
[5] |
TIMMERMANS B, DE LAS PEÑAS A, CASTAÑO I, et al. Adhesins in Candida glabrata[J]. J Fungi (Basel), 2018, 4(2):60.
|
[6] |
KUCHARÍKOVÁ S, TOURNU H, LAGROU K, et al. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin[J]. J Med Microbiol, 2011, 60(Pt 9):1261-1269.
doi: 10.1099/jmm.0.032037-0
pmid: 21566087
|
[7] |
CASTAÑO I, PAN S J, ZUPANCIC M, et al. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata[J]. Mol Microbiol, 2005, 55(4):1246-1258.
pmid: 15686568
|
[8] |
CAO F, LANE S, RANIGA P P, et al. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans[J]. Mol Biol Cell, 2006, 17(1):295-307.
pmid: 16267276
|
[9] |
FOX E P, BUI C K, NETT J E, et al. An expanded regulatory network temporally controls Candida albicans biofilm formation[J]. Mol Microbiol, 2015, 96(6):1226-1239.
doi: 10.1111/mmi.13002
pmid: 25784162
|
[10] |
俞焙秦, 江岑, 董丹凤, 等. 光滑假丝酵母PDR1基因敲除菌株的建立[J]. 生物技术, 2013, 23(4):43-46.
|
|
YU B Q, JIANG C, DONG D F, et al. Construction of a PDR1 Knock-out Strain of Candida glabrata[J]. Biotechnol, 2013, 23(4):43-46.
|
[11] |
SCHWARZMÜLLER T, MA B, HILLER E, et al. Systema-tic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes[J]. PLoS Pathog, 2014, 10(6):e1004211.
|
[12] |
李文静, 刘锦燕, 史册, 等. 融合PCR结合同源重组技术敲除白色假丝酵母菌FLO8基因[J]. 上海交通大学学报(医学版), 2016, 36(3):334-339.
doi: 10.3969/j.issn.16748115.2016.03.004
|
|
LI W J, LIU J Y, SHI C, et al. Knock out FLO8 gene in Candida albicans by fusion PCR combined with homologous recombination[J]. J Shanghai Jiaotong Univ(Med Sci), 2016, 36(3):334-339.
|
[13] |
王钰婷, 刘锦燕, 史册, 等. 白念珠菌ERG3基因敲除及其对耐药性的影响[J]. 上海交通大学学报(医学版), 2020, 40(2):163-170.
|
|
WANH Y T, LIU J Y, SHI C, et al. Knocking out ERG3 gene of Candida albicans and its effect on drug resistance[J]. J Shanghai Jiaotong Univ(Med Sci), 2020, 40(2):163-170.
|
[14] |
李文静, 刘明, 刘锦燕, 等. 白念珠菌FLO8基因突变株构建及鉴定[J]. 中国真菌学杂志, 2016, 11(1):1-7.
|
|
LI W J, LIU M, LIU J Y, et al. Construction and identification of Candida albicans FLO8 mutations[J]. Chin J Mycol, 2016, 11(1):1-7.
|
[15] |
UENO K, UNO J, NAKAYAMA H, et al. Development of a highly efficient gene targeting system induced by transient repression of YKU80 expression in Candida glabrata[J]. Eukaryot Cell, 2007, 6(7):1239-1247.
doi: 10.1128/EC.00414-06
pmid: 17513567
|
[16] |
STAAB J F, SUNDSTROM P. URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes[J]. Trends Microbiol, 2003, 11(2):69-73.
doi: 10.1016/s0966-842x(02)00029-x
pmid: 12598128
|
[17] |
BRAND A, MACCALLUM D M, BROWN A J, et al. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus[J]. Eukaryot Cell, 2004, 3(4):900-909.
doi: 10.1128/EC.3.4.900-909.2004
pmid: 15302823
|
[18] |
LAY J, HENRY L K, CLIFFORD J, et al. Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies[J]. Infect Immun, 1998, 66(11):5301-5306.
doi: 10.1128/IAI.66.11.5301-5306.1998
pmid: 9784536
|
[19] |
李振, 钱增堃, 刘福荣, 等. MALDI-TOF MS技术在真菌鉴定中的应用[J]. 安徽医学, 2022, 43(4):479-481.
|
|
LI Zhen, QIAN Zengkun, LIU Furon, et al. The Application of MALDI-TOF MS Technology in the Identification of Fungi[J]. J Anhui Med, 2022, 43(4):479-481.
|
[20] |
胡谢飞, 邬文燕, 智深深, 等. 一种用于脓毒症快速检测的多重PCR检测体系构建[J]. 重庆医科大学学报, 2022, 47(8):982-988.
|
|
HU X F, WU W Y, ZHI S S, et al. Establishment of a multiplex PCR system for rapid detection of sepsis[J]. J Chongqing Med Univ, 2022, 47(8):982-988.
|
[21] |
VITENSHTEIN A, CHARPAK-AMIKAM Y, YAMIN R, et al. NK cell recognition of Candida glabrata through binding of NKp46 and NCR1 to fungal ligands Epal, Epa6, and Epa7[J]. Cell Host Microbe, 2016, 20(4):527-534.
|