[1] Lionakis MS.New insights into innate immune control of systemic candidiasis[J]. Med Mycol,2014,52(6):555-564. [2] Smeekens SP, van de Veerdonk FL, Kullberg BJ, et al. Genetic susceptibility to Candida infections[J]. EMBO Mol Med,2013,5(6):805-813. [3] Ding X, Yan D, Sun W, et al.Epidemiology and risk factors for nosocomial Non-Candida albicans candidemia in adult patients at a tertiary care hospital in North China[J]. Med Mycol,2015,53(7):684-690. [4] Wu JQ, Zhu LP, Ou XT, et al.Epidemiology and risk factors for non-Candida albicans candidemia in non-neutropenic patients at a Chinese teaching hospital[J]. Med Mycol,2011,49(5):552-555. [5] 魏冰, 刘锦燕, 史册, 项明洁. 白念珠菌对唑类药物耐药机制的研究进展[J]. 检验医学,2014,29(9):978-981. [6] Ahn CH, Won TH, Kim H, et al.Inhibition of Candida albicans isocitrate lyase activity by cadiolides and sy-noilides from the ascidian Synoicum sp[J]. Bioorg Med Chem Lett,2013,23(14):4099-4101. [7] Lorenz MC, Fink GR.The glyoxylate cycle is required for fungal virulence[J]. Nature,2001,412(6842):83-86. [8] Prado RS, Alves RJ, Oliveira CM, et al.Inhibition of Paracoccidioides lutzii Pb01 isocitrate lyase by the natural compound argentilactone and its semi-synthetic derivatives[J]. PLoS One,2014,9(4):e94832. [9] Lee HS, Yoon KM, Han YR, et al.5-Hydroxyindole-type alkaloids, as Candida albicans isocitrate lyase inhibitors, from the tropical sponge Hyrtios sp[J]. Bioorg Med Chem Lett,2009,19(4):1051-1053. [10] Cheah HL, Lim V, Sandai D.Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents[J]. PLoS One,2014,9(4):e95951. [11] Bae M, Kim H, Moon K, et al.Mohangamides A and B, new dilactone-tethered pseudo-dimeric peptides inhibi-ting Candida albicans isocitrate lyase[J]. Org Lett,2015, 17(3):712-715. [12] Allen G, Bromley M, Kaye SJ, et al.Functional analysis of a mitochondrial phosphopantetheinyl transferase (PPTase) gene pptB in Aspergillus fumigatus[J]. Fungal Genet Biol,2011,48(4):456-464. [13] Dobb KS, Kaye SJ, Beckmann N, et al.Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target[J]. PLoS One,2015,10(11):e0143770. [14] Foley TL, Rai G, Yasgar A, et al.4-(3-Chloro-5-) trifluoromethyl(pyridin-2-yl)-N-(4-methoxypyridin-2-yl) piperazine-1-carbothioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth[J]. J Med Chem,2014,57(3):1063-1078. [15] 刘杨, 盛春泉, 张万年. 分泌型天冬氨酸蛋白酶—抗真菌药物作用的新靶点[J]. 中国药物化学杂志,2011,22(4):315-321. [16] Hamid S, Zainab S, Faryal R, et al.Inhibition of secreted aspartyl proteinase activity in biofilms of Candida species by mycogenic silver nanoparticles[J]. Artif Cells Nanomed Biotechnol,2017:1-7. [17] 郑楠薪, 胡丹丹, 姜远英, 等. 致病真菌几丁质合成调控的研究进展[J]. 第二军医大学学报,2014,35(5):549-554. [18] Deng FS, Lin CH. Cpp1 phosphatase mediated signaling crosstalk between Hog1 and Cek1 mitogen-activated protein kinases is involved in the phenotypic transition in Candida albicans[J/OL]. Med Mycol,2017-04-20[2017-07-24].https://www.ncbi.nlm.nih.gov/pubmed/28431022. [19] Correia I, Alonso-Monge R, Pla J.The Hog1 MAP Kinase Promotes the recovery from cell cycle arrest induced by hydrogen peroxide in Candida albicans[J]. Front Microbiol,2017,7:2133. [20] Su C, Lu Y, Liu H.Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity[J]. Mol Biol Cell,2013,24(3):385-397. [21] Dinér P, Veide Vilg J, Kjellén J, et al.Design, synthesis, and characterization of a highly effective Hog1 inhibitor: a powerful tool for analyzing MAP kinase signaling in yeast[J]. PLoS One,2011,6(5):e20012. [22] 梁华军, 阎澜,曹永兵, 等. 白色念珠菌TOR信号转导通路研究现状[J]. 药学实践杂志,2014,32(4):246-249,287. [23] Zacchi LF, Gomez-Raja J, Davis DA.Mds3 regulates morphogenesis in Candida albicans through the TOR pathway[J]. Mol Cell Biol,2010,30(14):3695-3710. [24] Liu NN, Flanagan PR, Zeng J, et al.Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition[J]. Proc Natl Acad Sci U S A,2017,114(24):6346-6351. [25] Liu S, Hou Y, Liu W, et al.Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets[J]. Eukaryot Cell,2015,14(4):324-334. [26] Yu Q, Wang H, Cheng X, et al.Roles of Cch1 and Mid1 in morphogenesis, oxidative stress response and virulence in Candida albicans[J]. Mycopathologia,2012,174(5-6):359-369. [27] Li H, Zhang C, Chen Z, et al.A promising approach of overcoming the intrinsic resistance of Candida krusei to fluconazole(FLC)--combining tacrolimus with FLC[J]. FEMS Yeast Res,2014,14(5):808-811. [28] Cordeiro Rde A, Macedo Rde B, Teixeira CE, et al.The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex[J]. J Med Microbiol,2014,63(Pt 7):936-944. [29] Xu D, Cheng J, Cao C, et al. Genetic interactions between Rch1 and the high-affinity calcium influx system Cch1/Mid1/Ecm7 in the regulation of calcium homeostasis, drug tolerance, hyphal development and virulence in Candida albicans[J]. FEMS Yeast Res,2015,15(7),pii: fov079. [30] Li J, Zhang B, Ma T, et al.Role of the inositol polyphosphate multikinase Ipk2 in regulation of hyphal development, calcium signaling and secretion in Candida albicans[J]. Mycopathologia,2017,182(7-8):609-623. [31] Mishra S, Singh S, Misra K. Restraining pathogenicity in Candida albicans by Taxifolin as an inhibitor of ras1-pka pathway[J/OL]. Mycopathologia,2017-06-05[2017-07-24].https://www.ncbi.nlm.nih.gov/pubmed/28681317. [32] Tiwari S, Thakur R, Shankar J.Role of heat-shock proteins in cellular function and in the biology of fungi[J]. Biotechnol Res Int,2015,2015:132635. [33] Cowen LE.The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype[J]. Nat Rev Microbiol,2008,6(3):187-198. [34] Truong T, Zeng G, Qingsong L, et al.Comparative ploidy proteomics of Candida albicans biofilms unraveled the role of the AHP1 gene in the biofilm persistence Against amphotericin B[J]. Mol Cell Proteomics,2016,15(11):3488-3500. [35] Luiz RL, Vila TV, de Mello JC, et al. Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms[J]. BMC Complement Altern Med,2015,15:68. [36] Perdoni F, Signorelli P, Cirasola D, et al.Antifungal activity of Myriocin on clinically relevant Aspergillus fumigatus strains producing biofilm[J]. BMC Microbiol,2015, 15:248. |