Review article

Advances in research of radiomics and metabolomics in acute pancreatitis

  • ZHONG Jingyu ,
  • DING Defang ,
  • XING Yue ,
  • HU Yangfan ,
  • ZHANG Huan ,
  • YAO Weiwu
Expand
  • 1. Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
    2. Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Received date: 2023-04-06

  Accepted date: 2023-06-26

  Online published: 2024-08-25

Abstract

Acute pancreatitis (AP) is an acute abdominal disease that is prone to organ dysfunction, with high mortality. Timely prediction of the occurrence and development trend of the disease is the prerequisite for early treatment and intervention. Radiomics can extract quantitative features from medical images with high throughput and realize deep data mining. It can be used for the diagnosis of acute pancreatitis and prediction of severity, progression and recurrence of the disease. For the diagnosis of AP, CT radiomics can distinguish recurrent AP patients from functional abdominal pain, chronic pancreatitis, and recurrent AP patients, with an area under curve (AUC) of 0.88. For predicting AP recurrence, CT radiomics can accurately predict AP recurrence within 48 months, with an AUC of 0.93. For predicting the severity of AP, MRI radiomics can predict whether AP patients will progress to moderate to severe AP in the future, with an AUC of 0.85, which is better than clinical scoring systems. For predicting complications and progression of AP, MRI radiomics can effectively predict the occurrence of peripancreatic necrosis, with an AUC of 0.92. Metabolomics has confirmed that metabolic spectrum changes dynamically during the occurrence and development of AP. It has been reported that active metabolites can be used as early warning indicators for the diagnosis, etiology identification and severity assessment of AP. In addition, urinary metabolomics allows accurate diagnosis of AP, with an AUC of 0.91. For identifying the etiology of AP, the blood metabolomics models can identify patients with biliary AP, hyperlipidemic AP, and alcoholic AP, with AUCs of 0.89, 0.91, and 0.86, respectively. For predicting the severity of AP, the blood metabolomics models can accurately predict whether AP patients will progress to moderate to severe AP in the future, with an AUC of 0.99. The combination of the radiomics and metabolomics can complement each other's advantages and integrate multi-group data, which can jointly characterize the process and internal connections of disease occurrence and development from different levels, for achieving early warning and early intervention more effectively.

Cite this article

ZHONG Jingyu , DING Defang , XING Yue , HU Yangfan , ZHANG Huan , YAO Weiwu . Advances in research of radiomics and metabolomics in acute pancreatitis[J]. Journal of Diagnostics Concepts & Practice, 2024 , 23(04) : 445 -451 . DOI: 10.16150/j.1671-2870.2024.04.014

References

[1] 中华医学会外科学分会胰腺外科学组. 中国急性胰腺炎诊治指南[J]. 中华外科杂志, 2021, 59(7):578-587.
  Chinese Pancreatic Surgery Association, Chinese Society of Surgery, Chinese Medical Association. Guidelines for diagnosis and treatment of acute pancreatitis in China (2021)[J]. Chin J Surg, 2021, 59(7):578-587.
[2] 中华医学会消化病学分会胰腺疾病学组, 中华胰腺病杂志编辑委员会, 中华消化杂志编辑委员会. 中国急性胰腺炎诊治指南(2019年,沈阳)[J]. 中华消化杂志, 2019, 39(11):721-730.
  Pancreatic Disease Group, Digestive Disease Brunch, Chinese Medical Association, Editorial Board for Chinese Journal of Pancreatology, Editorial Board for Chinese Journal of Digestion. Guideline for the diagnosis and treatment of acute pancreatitis in China[J]. Chin J Digestion, 2019, 39(11):721-730.
[3] 中国医疗保健国际交流促进会急诊医学分会, 脓毒症预防与阻断联盟. 重症急性胰腺炎预防与阻断急诊专家共识[J]. 中国急救医学, 2022, 42(5):369-379.
  Emergency Medicine Branch of China Association for the Promotion of International Exchange of Healthcare, Sepsis Prevention and Prevention Alliance. Expert consensus on prevention and blocking of severe acute pancreatitis in emergency department[J]. Chin J Crit Care Med, 2022, 42(5):369-379.
[4] 程峰, 邱兆磊, 郑传明, 等. JAK/STAT信号通路在大鼠重症急性胰腺炎早期作用机制的研究[J]. 中华全科医学, 2023, 21(1):41-44,65.
  CHENG F, QIU Z L, ZHENG C M, et al. Mechanism of JAK/STAT signaling pathway in the early stage severe acute pancreatitis rats[J]. Chin J Gen Pract, 2023, 21(1):41-44,65.
[5] 张娟, 雷静静, 刘琦, 等. 高脂血症性急性胰腺炎血液净化的应用进展[J]. 中国临床研究, 2022, 35(6):844-848.
  ZHANG J, LEI J J, LIU Q, et al. Application progress of blood purification in hyperlipidemic acute pancreatitis[J]. Chin J Clin Res, 2022, 35(6):844-848.
[6] FAGENHOLZ P J, CASTILLO C F, HARRIS N S, et al. Increasing United States hospital admissions for acute pancreatitis, 1988-2003[J]. Ann Epidemiol, 2007, 17(7):491-497.
[7] 金海港, 蒋桔红, 朱仲鑫. 1990—2019年中国胰腺炎疾病负担分析[J]. 肝胆胰外科杂志, 2022, 34(6):344-348.
  JIN H G, JIANG J H, ZHU Z X. Disease burden of pancreatitis from 1990 to 2019 in China[J]. J Hepatopancreatobiliary Surg, 2022, 34(6):344-348.
[8] 陈方莹, 柏小寅, 吴东. 预测急性胰腺炎严重程度的评分系统及生物标志物[J]. 中华内科杂志, 2019, 58(8):615-619.
  CHEN F Y, BAI X Y, WU D. The severity scoring system and prognostic biological markers of acute pancreatitis[J]. Chin J Intern Med, 2019, 58(8):615-619.
[9] LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446.
[10] HUANG E P, O'CONNOR J P B, MCSHANE L M, et al. Criteria for the translation of radiomics into clinically useful tests[J]. Nat Rev Clin Oncol, 2023, 20(2):69-82.
[11] 吴小佳, 汤琳, 刘欢, 等. 基于全脑影像组学的阿尔茨海默病诊断研究[J]. 重庆医科大学学报, 2022, 47(10):1187-1192.
  WU X J, TANG L, LIU H, et al. Diagnosis of Alzheimer's disease based on whole-brain radiomics[J]. J Chongqing Med Univ, 2022, 47(10):1187-1192.
[12] 李增华, 夏春华, 胡大涛, 等. 基于T2WI及动态对比增强MRI的影像组学模型预测肾细胞癌亚型[J]. 中国临床研究, 2023, 36(1):34-39.
  LI Z H, XIA C H, HU D T, et al. Prediction of renal cell carcinoma subtype by T2WI and dynamic contrast-enhanced MRI-based radiomics model[J]. Chin J Clin Res, 2023, 36(1): 34-39.
[13] 赵沙沙, 辛永康, 张凯, 等. 影像组学联合T1CE对Ⅱ、Ⅲ级胶质瘤IDH-1突变状态的预测价值[J]. 中华全科医学, 2023, 21(12):2106-2110.
  ZHAO S S, XIN Y K, ZHANG K, et al. Prediction of IDH-1 mutation status in WHO grade Ⅱ and Ⅲ gliomas by radiomics combined with T1-weighted contrast-enhanced image[J]. Chin J Gen Pract, 2023, 21(12):2106-2110.
[14] RINSCHEN M M, IVANISEVIC J, GIERA M, et al. Identification of bioactive metabolites using activity metabolomics[J]. Nat Rev Mol Cell Biol, 2019, 20(6):353-367.
[15] PIAZZA I, KOCHANOWSKI K, CAPPELLETTI V, et al. A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication[J]. Cell, 2018, 172(1-2):358-372.e23.
[16] PAN Y, LEI X, ZHANG Y. Association predictions of genomics, proteinomics, transcriptomics, microbiome, metabolomics, pathomics, radiomics, drug, symptoms, environment factor, and disease networks: a comprehensive approach[J]. Med Res Rev, 2022, 42(1):441-461.
[17] ZHONG J, HU Y, XING Y, et al. A systematic review of radiomics in pancreatitis: applying the evidence level ra-ting tool for promoting clinical transferability[J]. Insights Imaging, 2022, 13(1):139.
[18] MASHAYEKHI R, PAREKH V S, FAGHIH M, et al. Radiomic features of the pancreas on CT imaging accurately differentiate functional abdominal pain, recurrent acute pancreatitis, and chronic pancreatitis[J]. Eur J Radiol, 2020, 123:108778.
[19] LIN Q, JI Y F, CHEN Y, et al. Radiomics model of contrast-enhanced MRI for early prediction of acute pancrea-titis severity[J]. J Magn Reson Imaging, 2020, 51(2):397-406.
[20] 文瑶, 刘丹, 喻媛, 等. 基于临床联合CT影像组学特征列线图预测急性胰腺炎预后[J]. 中国医学影像技术, 2022, 38(11):1675-1679.
  WEN Y, LIU D, YU Y, et al. Nomogram based on clinical and CT radiomics features for predicting prognosis of acute pancreatitis[J] Chin J Med Imaging Technol, 2022, 38(11):1675-1679.
[21] 林峤, 李兵, 刘宁川, 等. 基于增强CT的影像组学模型预测坏死性胰腺炎的初步研究[J]. 影像研究与医学应用, 2022, 6(18):28-31.
  LIN Q, LI B, LIU N C, et al. Radiomic model of contras-tenhanced computed tomography for the early prediction of necrotizing pancreatitis: a preliminary study[J]. J Ima-ging Res Med Appl, 2022, 6(18):28-31.
[22] 范海云, 陈基明, 陈亮亮, 等. 基于胰腺周围脂肪间隙CT影像组学预测早期急性胰腺炎进展的价值[J]. 放射学实践, 2022, 37(6):683-689.
  FAN H Y, CHEN J M, CHEN L L, et al. The value of CT based radiomics of peripancreatic adipose space in predicting progression of early acute pancreatitis[J]. Radiol Pract, 2022, 37(6):683-689.
[23] IRANMAHBOOB A K, KIERANS A S, HUANG C, et al. Preliminary investigation of whole-pancreas 3D histogram ADC metrics for predicting progression of acute pancreatitis[J]. Clin Imaging, 2017, 42:172-177.
[24] ZHOU T, XIE C L, CHEN Y, et al. Magnetic resonance imaging-based radiomics models to predict early extrapancreatic necrosis in acute pancreatitis[J]. Pancreas, 2021, 50(10):1368-1375.
[25] CHEN Y, CHEN T W, WU C Q, et al. Radiomics model of contrast-enhanced computed tomography for predic-ting the recurrence of acute pancreatitis[J]. Eur Radiol, 2019, 29(8):4408-4417.
[26] 崔伟, 张文娟, 周利华, 等. CT检查纹理分析对儿童急性胰腺炎复发的预测价值[J]. 中华消化外科杂志, 2021, 20(4):459-465.
  CUI W, ZHANG WJ, ZHOU LH, et al. Predictive value of CT texture analysis for recurrence in children with acute pancreatitis[J]. Chin J Dig Surg, 2021, 20(4):459-465.
[27] 胡云涛, 黄小华, 刘念, 等. 基于磁共振T2WI序列影像组学预测急性胰腺炎复发的价值[J]. 磁共振成像, 2021, 12(10):12-15,21.
  HU Y T, HUANG X H, LIU N, et al. The value of T2WI sequence-based radiomics in predicting recurrence of acute pancreatitis[J]. Chin J Magn Reson Imaging, 2021, 12(10):12-15,21.
[28] HU Y, LIU N, TANG L, et al. Three-dimensional radiomics features of magnetic resonance T2-weighted ima-ging combined with clinical characteristics to predict the recurrence of acute pancreatitis[J]. Front Med (Lausanne), 2022, 9:777368.
[29] PENG Y, HONG J, RAFTERY D, et al. Metabolomic-based clinical studies and murine models for acute pancreatitis disease: a review[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(7):166123.
[30] XIAO H, HUANG J H, ZHANG X W, et al. Identification of potential diagnostic biomarkers of acute pancreatitis by serum metabolomic profiles[J]. Pancreatology, 2017, 17(4):543-549.
[31] VILLASE?OR A, KINROSS J M, LI J V, et al. 1H NMR global metabolic phenotyping of acute pancreatitis in the emergency unit[J]. J Proteome Res, 2014, 13(12):5362-5375.
[32] YANG Q, SUN J, CHEN Y Q. Multi-dimensional, comprehensive sample extraction combined with LC-GC/MS analysis for complex biological samples: application in the metabolomics study of acute pancreatitis[J]. RSC Adv, 2016, 6:25837-25849.
[33] XU H, ZHANG L, KANG H, et al. Serum metabonomics of mild acute pancreatitis[J]. J Clin Lab Anal, 2016, 30(6):990-998.
[34] TAKIS P G, TADDEI A, PINI R, et al. Fingerprinting acute digestive diseases by untargeted NMR based metabolomics[J]. Int J Mol Sci, 2018, 19(11):3288.
[35] LUSCZEK E R, PAULO JA, SALTZMAN J R, et al. Urinary 1H-NMR metabolomics can distinguish pancreatitis patients from healthy controls[J]. JOP, 2013, 14(2):161-170.
[36] HUANG J H, HE D, CHEN L, et al. GC-MS based metabolomics strategy to distinguish three types of acute pancreatitis[J]. Pancreatology, 2019, 19(5):630-637.
[37] LOU D, SHI K, LI H P, et al. Quantitative metabolic analysis of plasma extracellular vesicles for the diagnosis of severe acute pancreatitis[J]. J Nanobiotechnology, 2022, 20(1):52.
[38] KHAN J, SOLAKIVI T, SEPP?NEN H, et al. Serum lipid and fatty acid profiles are highly changed in patients with alcohol induced acute pancreatitis[J]. Pancrea-tology, 2012, 12(1):44-48.
[39] SILVA-VAZ P, JARAK I, RATO L, et al. Plasmatic oxidative and metabonomic profile of patients with different degrees of biliary acute pancreatitis severity[J]. Antioxidants (Basel), 2021, 10(6):988.
[40] SKOURAS C, ZHENG X, BINNIE M, et al. Increased levels of 3-hydroxykynurenine parallel disease severity in human acute pancreatitis[J]. Sci Rep, 2016, 6:33951.
[41] 黄湘平, 吴玲, 谭超超. 基于液相色谱-串联质谱法的轻症和重症急性胰腺炎差异的血清代谢组学研究[J]. 中国全科医学, 2023, 26(9):1118-1124.
  HUANG X P, WU L, TAN C C. Serum metabolomic study on the difference between mild and severe acute pancreatitis based on liquid chromatography-tandem mass spectrometry[J] Chin Gen Pract, 2023, 26(9):1118-1124.
[42] HOLZINGER A, HAIBE-KAINS B, JURISICA I. Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data[J]. Eur J Nucl Med Mol Imaging, 2019, 46(13):2722-2730.
[43] 张馨予, 刘威, 杜娟娟, 等. 影像组学和基因组学在急性胰腺炎中的应用进展[J]. 国际医学放射学杂志, 2022, 45(5):568-571.
  ZHANG X Y, LIU W, DU J J, et al. Application progress of radiomics and genomics in acute pancreatitis[J]. Int J Med Radiol, 2022, 45(5):568-571.
[44] KLONTZAS M E, KOLTSAKIS E, KALARAKIS G, et al. A pilot radiometabolomics integration study for the characterization of renal oncocytic neoplasia[J]. Sci Rep, 2023, 13(1):12594.
[45] 孙泽恩, 刘玉洁, 欧阳倩颖, 等. 组学技术在肿瘤耐药领域的研究进展:从单组学到多组学联合应用[J]. 中南大学学报(医学版), 2021, 46(6):620-627.
  SUN Z E, LIU Y J, OUYANG Q Y, et al. Research progress of omics technology in the field of tumor resistance: From single-omics to multi-omics combination application[J]. J Cent S Univ (Med Sci), 2021, 46(6):620-627.
Outlines

/