Review

Advances in application of ultrasound in diagnosis of diabetic nephropathy

  • GUO Juan ,
  • YANG Zhifang ,
  • JI Ri
Expand
  • Department of Ultrasound, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Received date: 2025-01-25

  Accepted date: 2025-03-31

  Online published: 2025-06-25

Abstract

According to the International Diabetes Federation (IDF) 2025 report, the global number of diabetic patients is projected to exceed 700 million, with approximately 40% of type 2 diabetes mellitus (T2DM) patients developing diabetic nephropathy (DN). As the global incidence rate of diabetes continues to rise, the clinical diagnosis and treatment of DN have become increasingly critical. Although DN exhibits certain characteristic clinical manifestations, its early-stage symptoms often closely resemble those of non-diabetic renal diseases (NDRD), posing significant challenges to accurate diagnosis. Renal biopsy, as the gold standard for diagnosing DN, is limited in its widespread application due to its invasive nature. The innovative development and multimodal integration of ultrasound technology have increasingly highlighted its value in the differential diagnosis and disease assessment of DN. Conventional ultrasound techniques, including grayscale and Doppler ultrasound, evaluate renal morphology and hemodynamic changes. DN patients typically show increased kidney volume, enhanced renal cortical echogenicity, and elevated renal artery resistive index (RRI), which are closely associated with glomerular basement membrane thickening and reduced vascular compliance due to arteriosclerosis of the affe-rent arterioles. Ultrasound elastography provides a new dimension for assessing renal fibrosis by quantitatively measuring tissue stiffness. In DN patients, shear wave velocity (SWV) exhibits a characteristic pattern of "initial increase followed by decrease", which may correlate with histopathological staging. Contrast-enhanced ultrasound (CEUS) dynamically evaluates renal cortical microcirculation using microbubble tracking technology. CEUS images of DN patients demonstrate significantly reduced area under the curve (AUC) and peak intensity (PI), indicating decreased blood perfusion in the renal cortical microvascular bed. In recent years, the integration of artificial intelligence (AI) with ultrasound technology has advanced rapidly in the diagnosis and treatment of renal diseases. However, its deep integration with ultrasound for differential diagnosis and disease monitoring of DN has not yet been realized. In the future, combining AI algorithms with ultrasound technology is expected to enable automatic learning and identification of renal structures and pathological features from large volumes of ultrasound images, automatic quantification of key parameters such as RRI and SWV, and dynamic analysis of changes in renal microcirculation, thereby significantly improving the accuracy and efficiency of DN diagnosis.

Cite this article

GUO Juan , YANG Zhifang , JI Ri . Advances in application of ultrasound in diagnosis of diabetic nephropathy[J]. Journal of Diagnostics Concepts & Practice, 2025 , 24(03) : 342 -348 . DOI: 10.16150/j.1671-2870.2025.03.014

References

[1] ZHENG Y, LEY S H, HU F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2):88-98.
[2] LIPSKA K J, HIRSCH I B, RIDDLE M C. Human insulin for type 2 diabetes: an effective, less-expensive option[J]. JAMA, 2017, 318(1):23-24.
[3] UMANATH K, LEWIS J B. Update on diabetic nephropathy: core curriculum 2018[J]. Am J Kidney Dis, 2018, 71(6):884-895.
[4] HU Q, JIANG L, YAN Q, et al. A natural products solution to diabetic nephropathy therapy[J]. Pharmacol Ther, 2023,241:108314.
[5] SAEEDI P, PETERSOHN I, SALPEA P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019,157:107843.
[6] ESPOSITO V, MAZZON G, BAIARDI P, et al. Safety and adequacy of percutaneous kidney biopsy performed by nephrology trainees[J]. BMC Nephrol, 2018, 19(1):14.
[7] OSHIMA M, SHIMIZU M, YAMANOUCHI M, et al. Trajectories of kidney function in diabetes: a clinicopathological update[J]. Nat Rev Nephrol, 2021, 17(11):740-750.
[8] SELBY N M, TAAL M W. An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22(Supplement_1):3-15.
[9] American Diabetes Association Professional Practice Committee. 11. Chronic kidney disease and risk management: standards of care in diabetes-2025[J]. Diabetes Care, 2025, 48(Supplement_1):S239-S251.
[10] DESAI N, KOPPISETTI H, PANDE S, et al. Nanomedicine in the treatment of diabetic nephropathy[J]. Future Med Chem, 2021, 13(7):663-686.
[11] KLEIN R, KNUDTSON M D, KLEIN B E, et al. The relationship of retinal vessel diameter to changes in diabetic nephropathy structural variables in patients with type 1 diabetes[J]. Diabetologia, 2010, 53(8):1638-1646.
[12] JIANG S, YU T, ZHANG Z, et al. Diagnostic performance of retinopathy in the detection of diabetic nephropathy in type 2 diabetes: a systematic review and meta-analysis of 45 studies[J]. Ophthalmic Res, 2019, 62(2):68-79.
[13] BERMEJO S, SOLER M J, GIMENO J, et al. Predictive factors for non-diabetic nephropathy in diabetic patients. The utility of renal biopsy. Factores predictivos de nefropatía no diabética en pacientes diabéticos. Utilidad de la biopsia renal[J]. Nefrologia, 2016, 36(5):535-544.
[14] MANCINI M, MASULLI M, LIUZZI R, et al. Renal duplex sonographic evaluation of type 2 diabetic patients[J]. J Ultrasound Med, 2013, 32(6):1033-1040.
[15] 党伟, 栗雯霏, 李杏先, 等. 肾叶间动脉阻力指数和肾脏实质弹性成像预测1型糖尿病肾病的价值[J]. 中国超声医学杂志, 2023, 39(8):907-910.
  DANG W, LI W F, LI X X, et al. The value of renal interlobar resistive index and renal parenchymal elastography to predict type l diabetic nephropathy[J]. Chin J Ultrasound Med, 2023, 39(8):907-910.
[16] 高翔, 孙爱童, 刘洋, 等. 肾超声检查联合血流动力学指标对早期糖尿病肾病的诊断价值[J]. 国际泌尿系统杂志, 2024, 44(5):912-916.
  GAO X, SUN A T, LIU Y, et al. Diagnostic value of renal ultrasonography combined with hemodynamic indexes in early diabetic nephropathy[J]. Int J Urol Nephrol, 2024, 44(5):912-916.
[17] LI N, WANG Y R, TIAN X Q, et al. Potential value of three-dimensional ultrasonography in diagnosis of diabetic nephropathy in Chinese diabetic population with kidney injury[J]. BMC Nephrol, 2020, 21(1):243.
[18] SHI L Q, SUN J W, MIAO H H, et al. Comparison of supersonic shear wave imaging-derived renal parenchyma stiffness between diabetes mellitus patients with and without diabetic kidney disease[J]. Ultrasound Med Biol, 2020, 46(7):1630-1640.
[19] 王丽丽. 彩色多普勒超声在糖尿病肾病诊断中的应用[J]. 实用医技杂志, 2022, 29(7):779-781.
  WANG L L. Color Doppler ultrasound in the diagnosis of diabetic nephropathy[J]. J Pract Med Tech, 2022, 29(7):779-781.
[20] 袁方, 何金朋, 高天奇, 等. 彩色多普勒超声监测肾血流动力学相关参数在早期糖尿病肾病诊断的临床价值[J]. 医学影像学杂志, 2023, 33(9):1699-1702.
  YUAN F, HE J P, GAO T Q, et al. The clinical value of color Doppler ultrasound monitoring renal hemodynamic parameters the early diagnosis of diabetes nephropathy[J]. J Med Imaging, 2023, 33(9):1699-1702.
[21] AFSAR B, ELSURER R. Increased renal resistive index in type 2 diabetes: clinical relevance, mechanisms and future directions[J]. Diabetes Metab Syndr, 2017, 11(4):291-296.
[22] NICKAVAR A, SAFAEIAN B, ZAERI H, et al. Usefulness of Doppler ultrasound for the early diagnosis of diabetic nephropathy in type 1 diabetes mellitus[J]. J Ultrasound, 2022, 25(1):79-82.
[23] MILOVANCEVA-POPOVSKA M, DZIKOVA S. Progression of diabetic nephropathy: value of intrarenal resistive index (RI)[J]. Prilozi, 2007, 28(1):69-79.
[24] LI H, SHEN Y, YU Z, et al. Potential role of the renal arterial resistance index in the differential diagnosis of diabetic kidney disease[J]. Front Endocrinol (Lausanne), 2022,12:731187.
[25] JUNG S I, MOON M H, SUNG C K, et al. Renal Doppler ultrasonography for predicting non-diabetic kidney disea-se in patients with diabetes[J]. Ultrasonography, 2023, 42(3):440-445.
[26] BODDI M, NATUCCI F, CIANI E. The internist and the renal resistive index: truths and doubts[J]. Intern Emerg Med, 2015, 10(8):893-905.
[27] 房建秀, 薛梦华, 康春松, 等. 应用剪切波弹性成像技术研究糖尿病肾病患者肾组织弹性[J]. 中华超声影像学杂志, 2018, 27(10):869-874.
  FANG J X, XUE M H, KANG C S, et al. Application of shear wave elastography in the study of renal tissue elasti-city in patients with diabetic nephropathy[J]. Chin J Ultrasonogr, 2018, 27(10):869-874.
[28] 谢永林, 李君, 彭咏, 等. 基于弹性成像提示早期糖尿病肾病风险的列线图模型初探[J]. 医学影像学杂志, 2022, 32(6):990-993,997.
  XIE Y L, LI J, PENG Y, et al. A preliminary study on the nomogram model based on elastography to evaluate the risk of diabetic kidney disease[J]. J Med Imaging, 2022, 32(6):990-993,997.
[29] 石秋玲, 焦阳, 江教人, 等. 声触诊组织定量早期诊断糖尿病肾病的价值[J]. 医学影像学杂志, 2017, 27(4):710-713.
  SHI Q L, JIAO Y, JIANG J R, et al. The value of virtual touch tissue quantification in early diagnosis of diabetic kidney disease[J]. J Med Imaging, 2017, 27(4):710-713.
[30] GOYA C, KILINC F, HAMIDI C, et al. Acoustic radiation force impulse imaging for evaluation of renal parenchyma elasticity in diabetic nephropathy[J]. Am J Roentgenol, 2015, 204(2):324-329.
[31] YUKSEKKAYA R, CELIKYAY F, YUKSEKKAYA M, et al. Shear wave elastography in early diabetic kidney disease[J]. Rev Assoc Med Bras (1992), 2022, 68(6):765-769.
[32] 种静, 杨雪, 武斌, 等. 剪切波弹性成像定量评估糖尿病肾病患者肾损害程度[J]. 中华医学超声杂志(电子版), 2021, 18(4):398-401.
  ZHONG J, YANG X, WU B, et al. Value of shear wave elastography in quantitative evaluation of patients with type 2 diabetic nephropathy[J]. Chin J Ultrasound Med (Electronic Edition), 2021, 18(4):398-401.
[33] 郑一君, 陈庆, 龚丽萍, 等. 不同病理分期的糖尿病肾病超声弹性表现[J]. 中国超声医学杂志, 2016, 32(7):622-625.
  ZHENG Y J, CHEN Q, GONG L P, et al. The study on elastic of renal tissue of diabetic nephropathy on the different pathological stages[J]. Chin J Ultrasound Med, 2016, 32(7):622-625.
[34] 欧长笛, 马妍, 邵文洁, 等. 三维量化和剪切波弹性定量评估糖尿病肾病肾小球病理分级的研究[J]. 中国超声医学杂志, 2022, 38(11):1263-1267.
  OU C D, MA Y, SHAO W J, et al. The quantitative eva-luation of study on the pathological classification of glo-meruli in diabetic nephropathy with three-dimensional quantification and shear wave elastography[J]. Chin J Ultrasound Med, 2022, 38(11):1263-1267.
[35] 孙孝杰, 王军. 超声造影对兔糖尿病肾病模型早期微循环血流灌注变化的实验研究[J]. 医学影像学杂志, 2024, 34(2):112-115.
  SUN X J, WANG J. Experimental study of contrast-enhanced ultrasound to evaluate the changes of microcirculation blood perfusion in early stage of rabbit diabetic nephropathy model[J]. J Med Imaging, 2024, 34(2):112-115.
[36] LUO J, CHEN J, SUN Y, et al. Quantitative contrast-enhanced ultrasound of renal perfusion: a technology for the assessment of early diabetic nephropathy in cynomolgus macaques with type 2 diabetes mellitus[J]. Abdom Radiol (NY), 2019, 44(5):1850-1857.
[37] WANG L, WU J, CHENG J F, et al. Diagnostic value of quantitative contrast-enhanced ultrasound (CEUS) for early detection of renal hyperperfusion in diabetic kidney disease[J]. Journal of Nephrology, 2015,28:669-678.
[38] LIN L, WANG Y, YAN L, et al. Interobserver reprodu-cibility of contrast-enhanced ultrasound in diabetic nephropathy[J]. Br J Radiol, 2022, 95(1129):20210189.
[39] 王泸宁, 万进东, 陈佳瑶, 等. 4辛基-衣康酸通过Nrf2/ARE通路抑制氧化应激减轻高脂饮食诱导的早期肾损伤[J]. 重庆医科大学学报, 2025, 50(2):254-259.
  WANG LN, WAN JD, CHEN JY, et al. Effect of 4-octyl itaconate in attenuating early renal injury induced y highfat diet through inhibiting oxidative stress via the nuclear factor erythroid 2-related factor 2/antioxidant response element pathway[J]. Chongqing Med Univ, 2025, 50(2):254-259.
[40] 程远, 陈毓菁. 基于机器学习的超声影像及SWE预测模型在早期慢性肾病中的应用[J]. 影像科学与光化学, 2024, 42(5):421-428.
  CHENG Y, CHEN Y J. Machine learning-based prediction model with ultrasound imaging and SWE in the diagnosis of early chronic kidney disease[J]. Imaging Science and Photochemistry, 2024, 42(5):421-428.
[41] 杨雪柯, 刘章锁, 李广普, 等. 基于机器学习模型的2型糖尿病患者视网膜微血管形态学特征与糖尿病肾病的相关性[J]. 中华医学杂志, 2023, 103(18):1393-1400.
  YANG X K, LIU Z S, LI G P, et al. Correlation between morphological characteristics of retinal microvessels and diabetic kidney disease in patients with type 2 diabetes mellitus based on a machine learning model[J]. Natl Med J China, 2023, 103(18):1393-1400.
[42] MAKINO M, YOSHIMOTO R, ONO M, et al. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning[J]. Sci Rep, 2019, 9(1):11862.
Outlines

/