内科理论与实践 ›› 2025, Vol. 20 ›› Issue (02): 112-119.doi: 10.16138/j.1673-6087.2025.02.03
曹芝君, 陆君涛
收稿日期:
2025-02-18
出版日期:
2025-04-28
发布日期:
2025-07-08
CAO Zhijun, LU Juntao
Received:
2025-02-18
Online:
2025-04-28
Published:
2025-07-08
摘要:
炎症性肠病(inflammatory bowel disease,IBD)是一类慢性复发性胃肠道炎症性疾病,包括克罗恩病(Crohn disease,CD)和溃疡性结肠炎(ulcerative colitis,UC)。30%~50% IBD患者可出现肠外表现(extraintestinal manifestation,EIM),累及肌肉骨骼、皮肤、眼部和肝胆系统等多个器官。部分EIM的发生与IBD炎症活动平行,而另一些则可独立进展,其发病机制涉及遗传易感性、肠道菌群紊乱及免疫异常等多个因素。EIM的诊疗管理需多学科团队(multidisciplinary team,MDT)协作,与IBD活动相关的EIM可通过控制IBD本身来缓解,而独立进展的EIM则需针对其发病机制采取个体化治疗策略。除传统治疗外,肿瘤坏死因子(tumor necrosis factor,TNF)-α抑制剂是适用于大部分EIM治疗的核心生物制剂。未来,精准诊断、个体化治疗及多学科协作将是EIM研究的重点方向。
中图分类号:
曹芝君, 陆君涛. 炎症性肠病肠外表现的发病机制和处理原则[J]. 内科理论与实践, 2025, 20(02): 112-119.
CAO Zhijun, LU Juntao. Pathogenesis and management principles of extraintestinal manifestations in inflammatory bowel disease[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(02): 112-119.
表1
肠外表现的临床特征
器官和系统 | EIM | 临床特征 | 与肠道表现的关系 |
---|---|---|---|
肌肉骨骼 | 外周关节炎Ⅰ型 | 少关节炎(<5 个关节),累及大关节,常见于下肢,急性发作 | 平行于肠道表现 |
外周关节炎Ⅱ型 | 多关节炎(≥5 个关节),对称性,慢性炎症 | 独立进展 | |
AxSpA | 慢性腰背痛、晨僵、骶髂关节炎、部分与HLA-B27相关 | 独立进展 | |
皮肤 | 结节性红斑 | 触痛性红色结节,多见于小腿前侧 | 平行于肠道表现 |
坏疽性脓皮病 | 坏死性皮肤溃疡、边缘隆起 | 独立进展 | |
Sweet综合征 | 发热、白细胞增多、痛性红斑样皮损 | 平行于肠道表现 | |
眼部 | 葡萄膜炎 | 眼痛、畏光、视力下降,前葡萄膜炎更常见 | 平行于肠道表现 |
巩膜外层炎 | 自限性,结膜充血、灼热感、瘙痒及轻度不适和疼痛 | 平行于肠道表现 | |
巩膜炎 | 眼部充血、疼痛,可能引起视功能损害 | 独立进展 | |
肝胆 | PSC | 胆汁淤积、黄疸、肝纤维化,可进展至胆管癌 | 独立进展 |
AIH | 转氨酶升高、IgG增高,部分患者对免疫抑制治疗敏感 | 不确定 |
表2
不同肠外表现的治疗方案
EIM分类 | 传统治疗 | 生物制剂 |
---|---|---|
与IBD活动平行的EIM | ||
外周关节炎1) | NSAID(选择性COX-2抑制剂);柳氮磺吡啶、甲氨蝶呤 | TNF-α抑制剂;其他生物制剂疗效尚存争议 |
结节性红斑 | 支持治疗;短期口服糖皮质激素[0.5~1.0 mg/(kg·d),1~2 周] | TNF-α抑制剂(基于IBD活动) |
Sweet综合征 | 控制IBD原发疾病;系统性糖皮质激素[0.5~1.0 mg/(kg·d)] | 有报道使用TNF-α抑制剂(IFX) |
葡萄膜炎 | 前葡萄膜炎:局部糖皮质激素滴眼液;中间型、后葡萄膜炎、全葡萄膜炎:玻璃体内注射或全身糖皮质激素+免疫抑制剂(二线) | 严重或伴IBD活动:TNF-α抑制剂(三线) |
巩膜外层炎 | 人工泪液、冷敷;难治性病例可使用局部糖皮质激素滴眼液 | 无明确生物制剂适应证 |
独立进展的EIM | ||
AxSpA | NSAID;柳氮磺吡啶、甲氨蝶呤无效 | TNF-α抑制剂;JAK抑制剂2) |
巩膜炎 | 轻症:选择性COX-2抑制剂、局部糖皮质激素滴眼液(短期);重症:系统性糖皮质激素1.0 ~1.5 mg/(kg·d),逐步减量+免疫抑制剂(甲氨蝶呤、硫唑嘌呤、吗替麦考酚酯、钙调磷酸酶抑制剂) | TNF-α抑制剂(难治性病例) |
坏疽性脓皮病 | 轻度:局部糖皮质激素、钙调磷酸酶抑制剂; 重度:糖皮质激素[0.5~2.0 mg/(kg·d),口服或静脉注射]、环孢素 | TNF-α 抑制剂(IFX) |
PSC | UDCA;肝移植(终末期) | TNF-α抑制剂、VDZ对于改善肝脏生化指标无效 |
AIH3) | 诱导缓解:泼尼松龙;维持治疗:硫唑嘌呤(一线),吗替麦考酚酯、 6-巯基嘌呤(二线) | 难治性:TNF-α 抑制剂(IFX) |
[1] |
Vavricka SR, Schoepfer A, Scharl M, et al. Extraintestinal manifestations of inflammatory bowel disease[J]. Inflamm Bowel Dis, 2015, 21(8): 1982-1992.
doi: 10.1097/MIB.0000000000000392 pmid: 26154136 |
[2] |
Rogler G, Singh A, Kavanaugh A, et al. Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management[J]. Gastroenterology, 2021, 161(4): 1118-1132.
doi: 10.1053/j.gastro.2021.07.042 pmid: 34358489 |
[3] | Guillo L, D’Amico F, Serrero M, et al. Assessment of extraintestinal manifestations in inflammatory bowel diseases: a systematic review and a proposed guide for clinical trials[J]. United European Gastroenterol J, 2020, 8(8): 1013-1030. |
[4] | Gordon H, Burisch J, Ellul P, et al. ECCO guidelines on extraintestinal manifestations in inflammatory bowel disease[J]. J Crohns Colitis, 2024, 18(1): 1-37. |
[5] | Kilic Y, Kamal S, Jaffar F, et al. Prevalence of extraintestinal manifestations in inflammatory bowel disease: a systematic review and meta-analysis[J]. Inflamm Bowel Dis, 2024, 30(2): 230-239. |
[6] | Boneschansker L, Burke KE. Beyond the gut: the epidemiology of extraintestinal manifestations in inflammatory bowel disease[J]. Clin Transl Gastroenterol, 2023, 14(12): e00618. |
[7] | He R, Zhao S, Cui M, et al. Cutaneous manifestations of inflammatory bowel disease: basic characteristics, therapy, and potential pathophysiological associations[J]. Front Immunol, 2023, 14: 1234535. |
[8] |
Maverakis E, Marzano AV, Le ST, et al. Pyoderma gangrenosum[J]. Nat Rev Dis Primers, 2020, 6(1): 81.
doi: 10.1038/s41572-020-0213-x pmid: 33033263 |
[9] | Sleiman J, Hitawala AA, Cohen B, et al. Systematic review: Sweet syndrome associated with inflammatory bowel disease[J]. J Crohns Colitis, 2021, 15(12): 1864-1876. |
[10] | Richardson H, Yoon G, Moussa G, et al. Ocular manifestations of IBD: pathophysiology, epidemiology, and iatrogenic associations of emerging treatment strategies[J]. Biomedicines, 2024, 12(12): 2856. |
[11] | Migliorisi G, Vella G, Dal Buono A, et al. Ophthalmological manifestations in inflammatory bowel diseases: keep an eye on it[J]. Cells, 2024, 13(2): 142. |
[12] | Wang MH, Friton JJ, Rebert N, et al. Novel genetic risk variants and clinical predictors associated with primary sclerosing cholangitis in patients with ulcerative colitis[J]. Clin Transl Gastroenterol, 2023, 14(9): e00615. |
[13] | Beheshti Maal A, Shahrbaf MA, Sadri B, et al. Prevalence of hepatobiliary manifestations in inflammatory bowel disease: a GRADE assessed systematic review and meta-analysis of more than 1.7 million patients[J]. J Crohns Colitis, 2024, 18(3): 360-374. |
[14] |
van Sommeren S, Janse M, Karjalainen J, et al. Extraintestinal manifestations and complications in inflammatory bowel disease: from shared genetics to shared biological pathways[J]. Inflamm Bowel Dis, 2014, 20(6): 987-994.
doi: 10.1097/MIB.0000000000000032 pmid: 24739630 |
[15] |
Khrom M, Long M, Dube S, et al. Comprehensive association analyses of extraintestinal manifestations in inflammatory bowel disease[J]. Gastroenterology, 2024, 167(2): 315-332.
doi: 10.1053/j.gastro.2024.02.026 pmid: 38490347 |
[16] |
Taurog JD, Richardson JA, Croft JT, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats[J]. J Exp Med, 1994, 180(6): 2359-2364.
doi: 10.1084/jem.180.6.2359 pmid: 7964509 |
[17] |
Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site[J]. Immunity, 2015, 43(2): 343-353.
doi: 10.1016/j.immuni.2015.07.014 pmid: 26287682 |
[18] | Tie Y, Huang Y, Chen R, et al. Current insights on the roles of gut microbiota in inflammatory bowel disease-associated extra-intestinal manifestations: pathophysiology and therapeutic targets[J]. Gut Microbes, 2023, 15(2): 2265028. |
[19] | Hedin CRH, Vavricka SR, Stagg AJ, et al. The pathogenesis of extraintestinal manifestations: implications for IBD research, diagnosis, and therapy[J]. J Crohns Colitis, 2019, 13(5): 541-554. |
[20] |
McCarthy DA, Rampton DS, Liu YC. Peripheral blood neutrophils in inflammatory bowel disease: morphological evidence of in vivo activation in active disease[J]. Clin Exp Immunol, 1991, 86(3): 489-493.
pmid: 1684141 |
[21] |
Nikolaus S, Bauditz J, Gionchetti P, et al. Increased secretion of pro-inflammatory cytokines by circulating polymorphonuclear neutrophils and regulation by interleukin 10 during intestinal inflammation[J]. Gut, 1998, 42(4): 470-476.
pmid: 9616306 |
[22] | Smith AM, Rahman FZ, Hayee B, et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease[J]. J Exp Med, 2009, 206(8): 1883-1897. |
[23] | Sanders TJ, McCarthy NE, Giles EM, et al. Increased production of retinoic acid by intestinal macrophages contributes to their inflammatory phenotype in patients with Crohn’s disease[J]. Gastroenterology, 2014, 146(5): 1278-1288. |
[24] | Yan JB, Luo MM, Chen ZY, et al. The function and role of the Th17/Treg cell balance in inflammatory bowel disease[J]. J Immunol Res, 2020, 2020: 8813558. |
[25] | Mortier C, Gracey E, Coudenys J, et al. RORγt inhibition ameliorates IL-23 driven experimental psoriatic arthritis by predominantly modulating γδ-T cells[J]. Rheumatology, 2023, 62(10): 3169-3178. |
[26] | Wang Y, Yang C, Hou Y, et al. Dimethyl itaconate inhibits antigen-specific Th17 cell responses and autoimmune inflammation via modulating NRF2/STAT3 signaling[J]. FASEB J, 2024, 38(5): e23607. |
[27] | Graham JJ, Mukherjee S, Yuksel M, et al. Aberrant hepatic trafficking of gut-derived T cells is not specific to primary sclerosing cholangitis[J]. Hepatology, 2022, 75(3): 518-530. |
[28] | Chen YH, Eskandarpour M, Zhang X, et al. Small-molecule antagonist of VLA-4 (GW559090) attenuated neuro-inflammation by targeting Th17 cell trafficking across the blood-retinal barrier in experimental autoimmune uveitis[J]. J Neuroinflammation, 2021, 18(1): 49. |
[29] |
Qaiyum Z, Gracey E, Yao Y, et al. Integrin and transcriptomic profiles identify a distinctive synovial CD8+ T cell subpopulation in spondyloarthritis[J]. Ann Rheum Dis, 2019, 78(11): 1566-1575.
doi: 10.1136/annrheumdis-2019-215349 pmid: 31471299 |
[30] | Nardone OM, Calabrese G, La Mantia A, et al. Reducing diagnostic delays of extraintestinal manifestations in inflammatory bowel disease: a comparative study of a multidisciplinary outpatient clinic versus conventional referral specialists[J]. Therap Adv Gastroenterol, 2025, 18: 17562848251323529. |
[31] | Sayers S, Lam D, Shah Q, et al. Impact on patient outcomes of spondyloarthritis-inflammatory bowel disease multi-disciplinary meetings[J]. Rheumatology (Oxford), 2025, 64(2): 815-820. |
[32] | Krauss O, Holzer K, Schuler A, et al. Challenges and approaches to make multidisciplinary team meetings interoperable[J]. Stud Health Technol Inform, 2017, 236: 63-69. |
[33] | Khumalo AC, Kane BT. Perspectives on record-keeping practices in MDT meetings and meeting record utility[J]. Int J Med Inform, 2022, 161: 104711. |
[34] | Guillo L, Savoye G, Amiot A, et al. Prevalence of and factors associated with extraintestinal manifestations and their remission in inflammatory bowel disease: the EXTRA-intestinal manifestation prospective study from the Groupe d’Etude Thérapeutique des Affections Inflammatoires du Tube Digestif[J]. Clin Transl Gastroenterol, 2023, 14(12): e00607. |
[35] |
Greuter T, Rieder F, Kucharzik T, et al. Emerging treatment options for extraintestinal manifestations in IBD[J]. Gut, 2021, 70(4): 796-802.
doi: 10.1136/gutjnl-2020-322129 pmid: 32847845 |
[36] |
De Galan C, Truyens M, Peeters H, et al. The impact of vedolizumab and ustekinumab on articular extra-intestinal manifestations in inflammatory bowel disease patients: a real-life multicentre cohort study[J]. J Crohns Colitis, 2022, 16(11): 1676-1686.
doi: 10.1093/ecco-jcc/jjac058 pmid: 35442433 |
[37] |
Tímár ÁE, Párniczky A, Budai KA, et al. Beyond the gut: a systematic review and meta-analysis of advanced therapies for inflammatory bowel disease-associated extraintestinal manifestations[J]. J Crohns Colitis, 2024, 18(6): 851-863.
doi: 10.1093/ecco-jcc/jjae002 pmid: 38189533 |
[38] | Narula N, Aruljothy A, Wong ECL, et al. The impact of ustekinumab on extraintestinal manifestations of Crohn’s disease: a post hoc analysis of the UNITI studies[J]. United European Gastroenterol J, 2021, 9(5): 581-589. |
[39] | Jansen FM, Vavricka SR, den Broeder AA, et al. Clinical management of the most common extra-intestinal manifestations in patients with inflammatory bowel disease focused on the joints, skin and eyes[J]. United European Gastroenterol J, 2020, 8(9): 1031-1044. |
[40] | Greuter T, Navarini A, Vavricka SR. Skin manifestations of inflammatory bowel disease[J]. Clin Rev Allergy Immunol, 2017, 53(3): 413-427. |
[41] | Licona Vera E, Betancur Vasquez C, Peinado Acevedo JS, et al. Ocular manifestations of inflammatory bowel disease[J]. Cureus, 2023, 15(6): e40299. |
[42] |
Danve A, Deodhar A. Treatment of axial spondyloarthritis: an update[J]. Nat Rev Rheumatol, 2022, 18(4): 205-216.
doi: 10.1038/s41584-022-00761-z pmid: 35273385 |
[43] | Webers C, Ortolan A, Sepriano A, et al. Efficacy and safety of biological DMARDs: a systematic literature review informing the 2022 update of the ASAS-EULAR recommendations for the management of axial spondyloarthritis[J]. Ann Rheum Dis, 2023, 82(1): 130-141. |
[44] | Abdel-Aty A, Gupta A, Del Priore L, et al. Management of noninfectious scleritis[J]. Ther Adv Ophthalmol, 2022, 14: 25158414211070879. |
[45] |
Maronese CA, Pimentel MA, Li MM, et al. Pyoderma gangrenosum: an updated literature review on established and emerging pharmacological treatments[J]. Am J Clin Dermatol, 2022, 23(5): 615-634.
doi: 10.1007/s40257-022-00699-8 pmid: 35606650 |
[46] | Sadeghi S, Goodarzi A. Various application of tofacitinib and ruxolitinib (Janus kinase inhibitors) in dermatology and rheumatology: a review of current evidence and future perspective[J]. Dermatol Pract Concept, 2022, 12(4): e2022178. |
[47] | Assis DN, Bowlus CL. Recent advances in the management of primary sclerosing cholangitis[J]. Clin Gastroenterol Hepatol, 2023, 21(8): 2065-2075. |
[48] | Shah A, Jones MP, Callaghan G, et al. Efficacy and safety of biologics in primary sclerosing cholangitis with inflammatory bowel disease: a systematic review and meta-analysis[J]. Hepatol Commun, 2024, 8(1): e0347. |
[49] | European Association for the Study of the Liver. EASL clinical practice guidelines: autoimmune hepatitis[J]. J Hepatol, 2015, 63(3): 971-1004. |
[50] | Hertz S, Anderson JM, Nielsen HL, et al. Fecal microbiota is associated with extraintestinal manifestations in inflammatory bowel disease[J]. Ann Med, 2024, 56(1): 2338244. |
[51] |
Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease[J]. J Allergy Clin Immunol, 2020, 145(1): 16-27.
doi: S0091-6749(19)31486-1 pmid: 31910984 |
[52] | Fan Z, Ross RP, Stanton C, et al. Lactobacillus casei CCFM1074 alleviates collagen-induced arthritis in rats via balancing Treg/Th17 and modulating the metabolites and gut microbiota[J]. Front Immunol, 2021, 12: 680073. |
[53] | Dusek O, Fajstova A, Klimova A, et al. Severity of experimental autoimmune uveitis is reduced by pretreatment with live probiotic Escherichia coli Nissle 1917[J]. Cells, 2020, 10(1): 23. |
[54] |
Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(8): 491-502.
doi: 10.1038/nrgastro.2017.75 pmid: 28611480 |
[55] |
Hoentjen F, Welling GW, Harmsen HJM, et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation[J]. Inflamm Bowel Dis, 2005, 11(11): 977-985.
pmid: 16239843 |
[56] |
Allegretti JR, Kassam Z, Carrellas M, et al. Fecal microbiota transplantation in patients with primary sclerosing cholangitis: a pilot clinical trial[J]. Am J Gastroenterol, 2019, 114(7): 1071-1079.
doi: 10.14309/ajg.0000000000000115 pmid: 30730351 |
[57] | Al-Shakhshir S, Quraishi MN, Mullish B, et al. FAecal micRobiota transplantation in primary sclerosinG chOlangitis (FARGO): study protocol for a randomised, multicentre, phase Ⅱa, placebo-controlled trial[J]. BMJ Open, 2025, 15(1): e095392. |
[58] | Eiro N, Fraile M, González-Jubete A, et al. Mesenchymal (stem) stromal cells based as new therapeutic alternative in inflammatory bowel disease: basic mechanisms, experimental and clinical evidence, and challenges[J]. Int J Mol Sci, 2022, 23(16): 8905. |
[59] |
Wang P, Li Y, Huang L, et al. Effects and safety of allogenic mesenchymal stem cell intravenous infusion in active ankylosing spondylitis patients who failed NSAIDs: a 20-week clinical trial[J]. Cell Transplant, 2014, 23(10): 1293-1303.
doi: 10.3727/096368913X667727 pmid: 23711393 |
[60] | Clua-Ferré L, Suau R, Vañó-Segarra I, et al. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles: a focus on inflammatory bowel disease[J]. Clin Transl Med, 2024, 14(11): e70075. |
[1] | 葛文松. 炎症性肠病相关肺损伤的诊治策略[J]. 内科理论与实践, 2025, 20(02): 107-111. |
[2] | 顾于蓓, 洪聿. 炎症性肠病患者缓解期药物降级策略[J]. 内科理论与实践, 2025, 20(02): 101-106. |
[3] | 陈骏, 罗成华. 腹膜后肿瘤外科发展的历史、现状与前景展望[J]. 外科理论与实践, 2022, 27(06): 490-494. |
[4] | 陈英, 张晨莉, 姚玮艳. 粒细胞和单核细胞吸附分离治疗中-重度炎症性肠病的有效性及安全性分析[J]. 内科理论与实践, 2022, 17(06): 441-446. |
[5] | 刘萍, 肖园, 王歆琼, 陆亭伟, 赵雪松, 杨媛艳. Wiskott-Aldrich综合征合并克罗恩病一例并文献复习[J]. 诊断学理论与实践, 2022, 21(03): 349-354. |
[6] | 孙培君, 谢梦凡, 王蕾,. 生物制剂和小分子药物治疗炎症性肠病的研究进展[J]. 内科理论与实践, 2020, 15(02): 124-130. |
[7] | 张安兴, 罗娟, 缪应雷,. 炎症性肠病的皮肤表现诊治策略[J]. 内科理论与实践, 2018, 13(02): 129-132. |
[8] | 施咏梅,. 炎症性肠病的营养支持治疗与饮食管理[J]. 内科理论与实践, 2017, 12(03): 171-175. |
[9] | 卜一芝, 罗娟, 缪应雷,. 5-氨基水杨酸在炎症性肠病中的研究进展及化学预防作用[J]. 内科理论与实践, 2017, 12(03): 205-208. |
[10] | 钟捷, 顾于蓓,. 炎症性肠病发病机制与诊治新进展[J]. 内科理论与实践, 2017, 12(03): 157-158. |
[11] | 刘小伟, 龚玲琪,. 免疫抑制剂在炎症性肠病的应用[J]. 内科理论与实践, 2017, 12(03): 163-167. |
[12] | 葛雅冬, 吴维, 刘占举,. 固有淋巴细胞在炎症性肠病免疫失衡机制研究中的新进展[J]. 内科理论与实践, 2017, 12(03): 209-211. |
[13] | 曹倩,. 克罗恩病患者生物制剂的优化治疗策略[J]. 内科理论与实践, 2017, 12(03): 159-161. |
[14] | 吴开春,. 粪菌移植在炎症性肠病治疗中的作用和困惑[J]. 内科理论与实践, 2017, 12(03): 162-. |
[15] | 兰平, 何晓生,. 炎症性肠病结肠直肠癌变的监测与治疗策略[J]. 外科理论与实践, 2016, 21(06): 476-480. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||