胆酸转运蛋白调控胆汁酸代谢的分子机制
收稿日期: 2021-11-24
网络出版日期: 2022-07-25
基金资助
国家自然科学基金项目(81922012);国家自然科学基金项目(81770583)
潘琼, 李明巧, 谭雅, 余思睿, 柴进 . 胆酸转运蛋白调控胆汁酸代谢的分子机制[J]. 内科理论与实践, 2022 , 17(01) : 4 -10 . DOI: 10.16138/j.1673-6087.2022.01.002
[1] | Chawla A, Saez E, Evans RM. “Don’t know much bile-ology”[J]. Cell, 2000, 103(1): 1-4. |
[2] | Russell DW. The enzymes, regulation, and genetics of bile acid synthesis[J]. Annu Rev Biochem, 2003, 72: 137-174. |
[3] | Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis[J]. N Engl J Med, 1998, 339(17): 1217-1227. |
[4] | Ghonem NS, Assis DN, Boyer JL. Fibrates and cholestasis[J]. Hepatology, 2015, 62(2): 635-643. |
[5] | Cai SY, Boyer JL. Bile infarcts: new insights into the pathogenesis of obstructive cholestasis[J]. Hepatology, 2019, 69(2): 473-475. |
[6] | Chai J, He Y, Cai SY, et al. Elevated hepatic multidrug resistance-associated protein 3/ATP-binding cassette subfamily C 3 expression in human obstructive cholestasis is mediated through tumor necrosis factor alpha and c-Jun NH2-terminal kinase/stress-activated protein kinase-signaling pathway[J]. Hepatology, 2012, 55(5): 1485-1494. |
[7] | Chai J, Cai SY, Liu X, et al. Canalicular membrane MRP2/ABCC2 internalization is determined by Ezrin Thr567 phosphorylation in human obstructive cholestasis[J]. J Hepatol, 2015, 63(6): 1440-1448. |
[8] | Chai J, Luo D, Wu X, et al. Changes of organic anion transporter MRP4 and related nuclear receptors in human obstructive cholestasis[J]. J Gastrointest Sur, 2011, 15(6): 996-1004. |
[9] | Pan Q, Zhang X, Zhang L, et al. Solute carrier organic anion transporter family member 3A1 is a bile acid efflux transporter in cholestasis[J]. Gastroenterology, 2018, 155(5): 1578-1592. |
[10] | Corpechot C, Chazouillères O, Rousseau A, et al. A placebo-controlled trial of bezafibrate in primary biliary cholangitis[J]. N Engl J Med, 2018, 378(23): 2171-2181. |
[11] | Schwarz M, Russell DW, Dietschy JM, et al. Alternate pathways of bile acid synthesis in the cholesterol 7α-hydroxylase knockout mouse are not upregulated by either cholesterol or cholestyramine feeding[J]. J Lipid Res, 2001, 42(10): 1594-1603. |
[12] | Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease[J]. Gastroenterology, 2004, 126(1): 322-342. |
[13] | Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation[J]. Physiol Rev, 2003, 83(2): 633-671. |
[14] | Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation[J]. Physiol Rev, 2009, 89(1): 147-191. |
[15] | Slijepcevic D, Kaufman C, Wichers CG, et al. Impaired uptake of conjugated bile acids and hepatitis B virus pres1-binding in Na+-taurocholate cotransporting polypeptide knockout mice[J]. Hepatology, 2015, 62(1): 207-219. |
[16] | Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond[J]. J Hepatol, 2013, 58(1): 155-168. |
[17] | Dawson PA, Lan T, Rao A. Bile acid transporters[J]. J Lipid Res, 2009, 50(12): 2340-2357. |
[18] | Slijepcevic D, Roscam Abbing RLP, Fuchs CD, et al. Na+-taurocholate cotransporting polypeptide inhibition has hepatoprotective effects in cholestasis in mice[J]. Hepatology, 2018, 68(3): 1057-1069. |
[19] | Vaz FM, Paulusma CC, Huidekoper H, et al. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype[J]. Hepatology, 2015, 61(1): 260-267. |
[20] | Liu R, Chen C, Xia X, et al. Homozygous p.Ser267Phe in SLC10A1 is associated with a new type of hypercholanemia and implications for personalized medicine[J]. Sci Rep, 2017, 7(1): 9214. |
[21] | Pan Q, Luo G, Qu J, et al. A homozygous R148W mutation in semaphorin 7A causes progressive familial intrahepatic cholestasis[J]. EMBO Mol Med, 2021, 13(11): e14563. |
[22] | Donkers JM, Kooijman S, Slijepcevic D, et al. NTCP deficiency in mice protects against obesity and hepatosteatosis[J]. JCI Insight, 2019, 5(14): e127197. |
[23] | Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (OAT) family: a systems biology perspective[J]. Physiol Rev, 2015, 95(1): 83-123. |
[21] | Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond[J]. J Hepatol, 2013, 58(1): 155-168. |
[24] | Csanaky IL, Lu H, Zhang Y, et al. Organic anion-transporting polypeptide 1b2 (Oatp1b2) is important for the hepatic uptake of unconjugated bile acids: studies in Oatp1b2-null mice[J]. Hepatology, 2011, 53(1): 272-281. |
[25] | van de Steeg E, Stránecky V, Hartmannová H, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver[J]. J Clin Invest, 2012, 122(2): 519-528. |
[26] | Ballatori N, Christian WV, Lee JY, et al. OSTα-OSTβ: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia[J]. Hepatology, 2005, 42(6): 1270-1279. |
[27] | Soroka CJ, Mennone A, Hagey LR, et al. Mouse organic solute transporter alpha deficiency enhances renal excretion of bile acids and attenuates cholestasis[J]. Hepatology, 2010, 51(1): 181-190. |
[28] | Sultan M, Rao A, Elpeleg O, et al. Organic solute transporter-β (SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis[J]. Hepatology, 2018, 68(2): 590-598. |
[29] | Gao E, Cheema H, Waheed N, et al. Organic solute transporter alpha deficiency: a disorder with cholestasis, liver fibrosis, and congenital diarrhea[J]. Hepatology, 2020, 71(5): 1879-1882. |
[30] | Boyer JL, Soroka CJ. Bile formation and secretion: an update[J]. J Hepatol, 2021, 75(1): 190-201. |
[31] | Xu J, Kausalya PJ, Van Hul N, et al. Protective functions of ZO-2/Tjp2 expressed in hepatocytes and cholangiocytes against liver injury and cholestasis[J]. Gastroenterology, 2021, 160(6): 2103-2118. |
[32] | Kubitz R, Dröge C, Kluge S, et al. Autoimmune BSEP disease: disease recurrence after liver transplantation for progressive familial intrahepatic cholestasis[J]. Clin Rev Allergy Immunol, 2015, 48(2-3): 273-284. |
[33] | Cao W, Kayama H, Chen ML, et al. The xenobiotic transporter Mdr1 enforces T cell homeostasis in the presence of intestinal bile acids[J]. Immunity, 2017, 47(6): 1182-1196. |
[34] | Kipp H, Arias IM. Trafficking of canalicular ABC transporters in hepatocytes[J]. Annu Rev Physiol, 2002, 64: 595-608. |
[35] | Lang C, Meier Y, Stieger B, et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury[J]. Pharmacogenet Genomics, 2007, 17(1): 47-60. |
[36] | Gautherot J, Delautier D, Maubert MA, et al. Phosphorylation of ABCB4 impacts its function: insights from disease-causing mutations[J]. Hepatology, 2014, 60(2): 610-621. |
[37] | Stieger B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis[J]. Drug Metab Rev, 2010, 42(3): 437-445. |
[38] | Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2)[J]. Pflugers Arch, 2007, 453(5): 643-659. |
[39] | Beer AJ, Hertz D, Seemann E, et al. Reduced Mrp2 surface availability as PI3Kγ-mediated hepatocytic dysfunction reflecting a hallmark of cholestasis in sepsis[J]. Sci Rep, 2020, 10(1): 13110. |
[40] | Bohan A, Chen WS, Denson LA, et al. Tumor necrosis factor alpha-dependent up-regulation of LRH-1 and MRP3(ABCC3) reduces liver injury in obstructive cholestasis[J]. J Biol Chem, 2003, 278(38): 36688-36698. |
[41] | Chen W, Cai SY, Xu S, et al. Nuclear receptors RXRα: RARα are repressors for human MRP3 expression[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 292(5): G1221-G1227. |
[42] | Zhang X, Wang T, Yang Y, et al. Tanshinone ⅡA attenuates acetaminophen-induced hepatotoxicity through HOTAIR-Nrf2-MRP2/4 signaling pathway[J]. Biomed Pharmacother, 2020, 130: 110547. |
[43] | Vollrath V, Wielandt AM, Iruretagoyena M, et al. Role of Nrf2 in the regulation of the Mrp2(ABCC2) gene[J]. Biochem J, 2006, 395(3): 599-609. |
[44] | Schuetz EG, Strom S, Yasuda K, et al. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450[J]. J Biol Chem, 2001, 276(42): 39411-39418. |
[45] | Mennone A, Soroka CJ, Cai SY, et al. MRP4-/- mice have an impaired cytoprotective response in obstructive cholestasis[J]. Hepatology, 2006, 43(5): 1013-1021. |
[46] | Keppler D. The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia[J]. Drug Metab Dispos, 2014, 42(4): 561-565. |
[47] | Fang C, Filipp FV, Smith JW. Unusual binding of ursodeoxycholic acid to ileal bile acid binding protein: role in activation of FXRα[J]. J Lipid Res, 2012, 53(4): 664-673. |
[48] | Harris MJ, Kagawa T, Dawson PA, et al. Taurocholate transport by hepatic and intestinal bile acid transporters is independent of FIC1 overexpression in Madin-Darby canine kidney cells[J]. J Gastroenterol Hepatol, 2004, 19(7): 819-825. |
[49] | Richter D, Harsch S, Strohmeyer A, et al. MALDI-TOF mass spectrometry screening of cholelithiasis risk markers in the gene of HNF1α[J]. J Proteomics, 2012, 75(12): 3386-3399. |
[50] | Chen F, Ma L, Sartor RB, et al. Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation[J]. Gastroenterology, 2002, 123(6): 2005-2016. |
[51] | Yang N, Dong YQ, Jia GX, et al. ASBT(SLC10A2): a promising target for treatment of diseases and drug discovery[J]. Biomed Pharmacother, 2020, 132: 110835. |
[52] | Out C, Patankar JV, Doktorova M, et al. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4[J]. J Hepatol, 2015, 63(3): 697-704. |
/
〈 |
|
〉 |