综述

中药虎杖治疗脓毒症的研究进展

展开
  • 上海交通大学医学院附属新华医院急诊医学科,上海 200092

收稿日期: 2021-05-10

  网络出版日期: 2022-07-25

基金资助

国家自然科学基金项目(81772111);上海市综合医院中西医结合专项(ZHYY-ZXYJHZX-202003);上海市卫生系统优秀人才培养计划(2018BR13)

本文引用格式

李响, 王杨, 葛晓利, 潘曙明 . 中药虎杖治疗脓毒症的研究进展[J]. 内科理论与实践, 2022 , 17(01) : 92 -96 . DOI: 10.16138/j.1673-6087.2022.01.018

参考文献

[1] Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810.
[2] Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211.
[3] Dugar S, Choudhary C, Duggal A. Sepsis and septic shock: guideline-based management[J]. Cleve Clin J Med. 2020, 87(1): 53-64.
[4] Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management[J]. BMJ, 2016, 353: 1585-1605.
[5] Leslie M. Immunology. Stalling sepsis?[J]. Science, 2012, 337(6098): 1036.
[6] van der Poll T, van de Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets[J]. Nat Rev Immunol, 2017, 17(7): 407-420.
[7] Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression[J]. Nat Rev Nephrol, 2018, 14(2): 121-137.
[8] Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome[J]. Immunol Rev, 2016, 274(1): 330-353.
[9] Allison SJ. Sepsis: NET-induced coagulation induces organ damage in sepsis[J]. Nat Rev Nephrol, 2017, 13(3): 133.
[10] Mollnes TE, Huber-Lang M. Complement in sepsis-when science meets clinics[J]. FEBS Lett, 2020, 594(16): 2621-2632.
[11] Zhang H, Zeng L, Xie M, et al. TMEM173 drives lethal coagulation in sepsis[J]. Cell Host Microbe, 2020, 27(4): 556-570.
[12] Xu S, Pan X, Mao L, et al. Phospho-Tyr705 of STAT3 is a therapeutic target for sepsis through regulating inflammation and coagulation[J]. Cell Commun Signal, 2020, 18(1): 104.
[13] Joffre J, Hellman J, Ince C, et al. Endothelial responses in sepsis[J]. Am J Respir Crit Care Med, 2020, 202(3): 361-370.
[14] Prauchner CA. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy[J]. Burns, 2017, 43(3): 471-485.
[15] 吴玉娇, 张晶, 漆立军. 血必净注射液治疗脓毒症临床疗效和安全性的Meta分析[J]. 中华危重病急救医学, 2020, 32(6): 691-695.
[16] Li C, Wang P, Li M, et al. The current evidence for the treatment of sepsis with Xuebijing injection: bioactive constituents, findings of clinical studies and potential mechanisms[J]. J Ethnopharmacol, 2021, 265: 1-17.
[17] 邢燕, 程东良, 史长松. 参附注射液抑制HMGB1诱发的CD11B+细胞麻痹对严重脓毒症内皮的保护作用[J]. 中华危重病急救医学, 2020, 32(6): 696-701.
[18] Zou M, Yang W, Niu L, et al. Polydatin attenuates mycoplasma gallisepticum (HS strain)-induced inflammation injury via inhibiting the TLR6/ MyD88/NF-κB pathway[J]. Microb Pathog, 2020, 149: 104552.
[19] Fu Y, Jin Y, Shan A, et al. Polydatin protects bovine mammary epithelial cells against zearalenone-induced apoptosis by inhibiting oxidative responses and endoplasmic reticulum stress[J]. Toxins (Basel), 2021, 13(2): 121-138.
[20] Kim JS, Jeong SK, Oh SJ, et al. The resveratrol analogue, HS-1793, enhances the effects of radiation therapy through the induction of anti-tumor immunity in mammary tumor growth[J]. Int J Oncol, 2020, 56(6): 1405-1416.
[21] Marumo M, Ekawa K, Wakabayashi I. Resveratrol inhibits Ca2+ signals and aggregation of platelets[J]. Environ Health Prev Med, 2020, 25(1): 70.
[22] Giordo R, Zinellu A, Eid AH, et al. Therapeutic potential of resveratrol in COVID-19-associated hemostatic disorders[J]. Molecules, 2021, 26(4): 856.
[23] van Polanen N, Zacharewicz E, de Ligt M, et al. Resveratrol-induced remodelling of myocellular lipid stores: a study in metabolically compromised humans[J]. Physiol Rep, 2021, 9(2): e14692.
[24] Chen J, Liu Q, Wang Y, et al. Protective effects of resveratrol liposomes on mitochondria in substantia nigra cells of parkinsonized rats[J]. Ann Palliat Med, 2021, 10(3): 2458-2468.
[25] 张云婷, 黄晓, 陈运中, 等. 虎杖主要化学成分及其生物合成机制研究进展[J]. 中国中药杂志, 2020, 45(18): 4364-4372.
[26] 刘慧文, 王国凯, 储宣宁, 等. 不同产地虎杖HPLC指纹图谱及6种成分含量测定[J]. 现代中药研究与实践, 2018, 32(3): 13-18.
[27] Meng QH, Liu HB, Wang JB. Polydatin ameliorates renal ischemia/reperfusion injury by decreasing apoptosis and oxidative stress through activating sonic hedgehog signaling pathway[J]. Food Chem Toxicol, 2016, 96: 215-225.
[28] Chen L, Lan Z, Lin Q, et al. Polydatin ameliorates renal injury by attenuating oxidative stress-related inflammatory responses in fructose-induced urate nephropathic mice[J]. Food Chem Toxicol, 2013, 52: 28-35.
[29] O’Sullivan AW, Wang JH, Redmond HP. NF-κB 38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy[J]. J Surg Res, 2009, 152(1): 46-53.
[30] Wang Y, Wang L, Gong Z. Regulation of acetylation in high mobility group protein B1 cytosol translocation[J]. DNA Cell Biol, 2019, 38(5): 491-499.
[31] Sun R, Zhang Y, Lv Q, et al. Toll-like receptor 3 (TLR3) induces apoptosis via death receptors and mitochondria by up-regulating the transactivating p63 isoform alpha (TAP63alpha)[J]. J Biol Chem, 2011, 286(18): 15918-15928.
[32] Denning NL, Aziz M, Gurien SD, et al. DAMPs and NETs in sepsis[J]. Front Immunol, 2019, 10: 2536.
[33] Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1[J]. Front Immunol, 2020, 11: 484.
[34] Wang B, Bellot GL, Iskandar K, et al. Resveratrol attenuates TLR-4 mediated inflammation and elicits therapeutic potential in models of sepsis[J]. Sci Rep, 2020, 10(1): 18837.
[35] Shang X, Lin K, Yu R, et al. Resveratrol protects the myocardium in sepsis by activating the phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and inhibiting the nuclear factor-κB (NF-κB) signaling pathway[J]. Med Sci Monit, 2019, 25: 9290-9298.
[36] Xu W, Lu Y, Yao J, et al. Novel role of resveratrol: suppression of high-mobility group protein box 1 nucleocytoplasmic translocation by the upregulation of sirtuin 1 in sepsis-induced liver injury[J]. Shock, 2014, 42(5): 440-447.
[37] Wen Q, Lau N, Weng H, et al. Chrysophanol exerts anti-inflammatory activity by targeting histone deacetylase 3 through the high mobility group protein 1-nuclear transcription factor-κB signaling pathway in vivo and in vitro[J]. Front Bioeng Biotechnol, 2020, 8: 623866.
[38] Qing J, Zhang Z, Novák P, et al. Mitochondrial metabolism in regulating macrophage polarization: an emerging regulator of metabolic inflammatory diseases[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(9): 917-926.
[39] Saqib U, Sarkar S, Suk K, et al. Phytochemicals as modulators of M1-M2 macrophages in inflammation[J]. Oncotarget, 2018, 9(25): 17937-17950.
[40] Ding Y, Liu P, Chen ZL, et al. Emodin attenuates lipopolysaccharide-induced acute liver injury via inhibiting the TLR4 signaling pathway in vitro and in vivo[J]. Front Pharmacol, 2018, 9: 962.
[41] Mantzarlis K, Tsolaki V, Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies[J]. Oxid Med Cell Longev, 2017, 2017: 5985209.
[42] Chen Y, Luan L, Wang C, et al. Dexmedetomidine protects against lipopolysaccharide-induced early acute kidney injury by inhibiting the iNOS/NO signaling pathway in rats[J]. Nitric Oxide, 2019, 85: 1-9.
[43] Heemskerk S, Masereeuw R, Russel FG, et al. Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury[J]. Nat Rev Nephrol, 2009, 5(11): 629-640.
[44] Aydın S, Şahin TT, Bacanlı M, et al. Resveratrol protects sepsis-induced oxidative DNA damage in liver and kidney of rats[J]. Balkan Med J, 2016, 33(6): 594-601.
[45] Zhang HX, Duan GL, Wang CN, et al. Protective effect of resveratrol against endotoxemia-induced lung injury involves the reduction of oxidative/nitrative stress[J]. Pulm Pharmacol Ther, 2014, 27(2): 150-155.
[46] 吴孟娇, 李晓会, 郑佳佳, 等. 虎杖苷对脓毒症致急性肾损伤小鼠的保护作用[J]. 中草药, 2011, 42(10): 2033-2036.
[47] Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-733.
[48] Wang Y, Wang X, Zhang L, et al. Alleviation of acute lung injury in rats with sepsis by resveratrol via the phosphatidylinositol 3-kinase/nuclear factor-erythroid 2 related factor 2/heme oxygenase-1 (PI3K/Nrf2/HO-1) pathway[J]. Med Sci Monit, 2018, 24: 3604-3611.
[49] Li XH, Gong X, Zhang L, et al. Protective effects of polydatin on septic lung injury in mice via upregulation of HO-1[J]. Mediators Inflamm, 2013, 2013: 354087.
[50] Wu J, Deng Z, Sun M, et al. Polydatin protects against lipopolysaccharide-induced endothelial barrier disruption via SIRT3 activation[J]. Lab Invest, 2020, 100(4): 643-656.
[51] Luissint AC, Parkos CA, Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair[J]. Gastroenterology, 2016, 151(4): 616-632.
[52] Chen L, Li L, Han Y, et al. Tong-fu-li-fei decoction exerts a protective effect on intestinal barrier of sepsis in rats through upregulating ZO-1/occludin/claudin-1 expression[J]. J Pharmacol Sci, 2020, 143(2): 89-96.
[53] Li Y, Guo R, Zhang M, et al. Protective effect of emodin on intestinal epithelial tight junction barrier integrity in rats with sepsis induced by cecal ligation and puncture[J]. Exp Ther Med, 2020, 19(6): 3521-3530.
[54] Brilha S, Ong CWM, Weksler B, et al. Matrix metalloproteinase-9 activity and a downregulated hedgehog pathway impair blood-brain barrier function in an in vitro model of CNS tuberculosis[J]. Sci Rep, 2017, 7(1): 16031.
[55] 刘新强, 温妙云, 韩永丽, 等. 白藜芦醇改善脓毒症脑病大鼠认知功能障碍的机制研究[J]. 中华危重病急救医学, 2020, 32(10): 1189-1193.
[56] Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(4): 759-773.
[57] Liu X, Shao K, Sun T. SIRT1 regulates the human alveolar epithelial A549 cell apoptosis induced by Pseudomonas aeruginosa lipopolysaccharide[J]. Cell Physiol Biochem, 2013, 31(1): 92-101.
[58] An R, Zhao L, Xu J, et al. Resveratrol alleviates sepsis-induced myocardial injury in rats by suppressing neutrophil accumulation, the induction of TNF-α and myocardial apoptosis via activation of Sirt1[J]. Mol Med Rep, 2016, 14(6): 5297-5303.
文章导航

/