脑-肠轴与2型糖尿病相关性的研究进展
收稿日期: 2021-04-16
网络出版日期: 2022-07-25
基金资助
国家重点研发计划项目(2016YFC130 5000);国家重点研发计划项目(2016YFC1305005);国家自然科学基金项目(81770778);国家自然科学基金项目(82070849)
高铭, 李娜, 刘煜 . 脑-肠轴与2型糖尿病相关性的研究进展[J]. 内科理论与实践, 2021 , 16(06) : 418 -421 . DOI: 10.16138/j.1673-6087.2021.06.010
[1] | International Diabetes Federation. IDF diabetes atlas.[DB/OL]. 8th ed. 2019. https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html. |
[2] | 卢苇, 关历, 凌仲春, 等. 浅述2型糖尿病的发病机制[J]. 影像研究与医学应用, 2017, 1(9): 168-170. |
[3] | Bauer KC, Huus KE, Finlay BB. Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis[J]. Cell Microbiol, 2016, 18(5): 632-644. |
[4] | Romijn JA, Corssmit EP, Havekes LM, et al. Gut-brain axis[J]. Curr Opin Clin Nutr Metab Care, 2008, 11(4): 518-521. |
[5] | Westfall S, Lomis N, Kahouli I, et al. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis[J]. Cell Mol Life Sci, 2017, 74(20): 3769-3787. |
[6] | Depoortere I. Taste receptors of the gut: emerging roles in health and disease[J]. Gut, 2014, 63(1): 179-190. |
[7] | Giuffrè M, Moretti R, Campisciano G, et al. You talking to me? Says the enteric nervous system (ENS) to the microbe. How intestinal microbes interact with the ENS[J]. J Clin Med, 2020, 9(11): 3705. |
[8] | Fournel A, Drougard A, Duparc T, et al. Apelin targets gut contraction to control glucose metabolism via the brain[J]. Gut, 2017, 66(2): 258-269. |
[9] | Grasset E, Burcelin R. The gut microbiota to the brain axis in the metabolic control[J]. Rev Endocr Metab Disord, 2019, 20(4): 427-438. |
[10] | Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013. |
[11] | Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis[J]. Front Neurosci, 2018, 12: 49. |
[12] | Sjölund K, Sandén G, Håkanson R, et al. Endocrine cells in human intestine: an immunocytochemical study[J]. Gastroenterology, 1983, 85(5): 1120-1130. |
[13] | Andrews ZB, Liu ZW, Walllingford N, et al. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals[J]. Nature, 2008, 454(7206): 846-851. |
[14] | Poher AL, Tschöp MH, Müller TD. Ghrelin regulation of glucose metabolism[J]. Peptides, 2018, 100: 236-242. |
[15] | Tran KL, Park YI, Pandya S, et al. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes[J]. Am Health Drug Benefits, 2017, 10(4): 178-188. |
[16] | Samms RJ, Coghlan MP, Sloop KW. How may GIP enhance the therapeutic efficacy of GLP-1?[J]. Trends Endocrinol Metab, 2020, 31(6): 410-421. |
[17] | Thomas MK, Nikooienejad A, Bray R, et al. Dual GIP and GLP-1 receptor agonist tirzepatide improves beta-cell function and insulin sensitivity in type 2 diabetes[J]. J Clin Endocrinol Metab, 2021, 106(2): 388-396. |
[18] | Nyborg NCB, Kirk RK, de Boer AS, et al. Cholecystokinin-1 receptor agonist induced pathological findings in the exocrine pancreas of non-human primates[J]. Toxicol Appl Pharmacol, 2020, 399: 115035. |
[19] | Ahrén B, Holst JJ, Efendic S. Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes[J]. J Clin Endocrinol Metab, 2000, 85(3): 1043-1048. |
[20] | Steinert RE, Feinle-Bisset C, Asarian L, et al. Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB[J]. Physiol Rev, 2017, 97(1): 411-463. |
[21] | Holzer P, Farzi A. Neuropeptides and the microbiota-gut-brain axis[J]. Adv Exp Med Biol, 2014, 817: 195-219. |
[22] | Li X, Hu J, Zhang R, et al. Urocortin ameliorates diabetic nephropathy in obese db/db mice[J]. Br J Pharmacol, 2008, 154(5): 1025-1034. |
[23] | Tirabassi G, Corona G, Lamonica GR, et al. Diabetes mellitus-associated functional hypercortisolism impairs sexual function in male late-onset hypogonadism[J]. Horm Metab Res, 2016, 48(1): 48-53. |
[24] | Farzi A, Hassan AM, Zenz G, et al. Diabesity and mood disorders: multiple links through the microbiota-gut-brain axis[J]. Mol Aspects Med, 2019, 66: 80-93. |
[25] | Larraufie P, Martin-Gallausiaux C, Lapaque N, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells[J]. Sci Rep, 2018, 8(1): 74. |
[26] | Xu Y, Zhou H, Zhu Q. The impact of microbiota-gut-brain axis on diabetic cognition impairment[J]. Front Aging Neurosci, 2017, 9: 106. |
[27] | Margolis KG, Cryan JF, Mayer EA. The microbiota-gut-brain axis: from motility to mood[J]. Gastroenterology, 2021, 160(5): 1486-1501. |
[28] | Martin AM, Yabut JM, Choo JM, et al. The gut microbiome regulates host glucose homeostasis via peripheral serotonin[J]. Proc Natl Acad Sci U S A, 2019, 116(40): 19802-19804. |
[29] | Wu J, Wang K, Wang X, et al. The role of the gut microbiome and its metabolites in metabolic diseases[J]. Protein Cell, 2021, 12(5): 360-373. |
[30] | Gu Y, Wang X, Li J, et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment[J]. Nat Commun, 2017, 8(1): 1785. |
[31] | Talukdar S, Oh DY, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase[J]. Nat Med, 2012, 18(9): 1407-1412. |
[32] | American Diabetes Association. Standards of medical care in diabetes—2013[J]. Diabetes Care, 2013, 36 Suppl 1: S11-S66. |
[33] | Ferracini M, Martins JO, Campos MR, et al. Impaired phagocytosis by alveolar macrophages from diabetic rats is related to the deficient coupling of LTs to the FcγR signaling cascade[J]. Mol Immunol, 2010, 47(11-12): 1974-1980. |
/
〈 |
|
〉 |