内科理论与实践 ›› 2021, Vol. 16 ›› Issue (06): 418-421.doi: 10.16138/j.1673-6087.2021.06.010
收稿日期:
2021-04-16
出版日期:
2021-12-27
发布日期:
2022-07-25
通讯作者:
刘煜
E-mail:drliuyu@njmu.edu.cn
基金资助:
Received:
2021-04-16
Online:
2021-12-27
Published:
2022-07-25
中图分类号:
高铭, 李娜, 刘煜. 脑-肠轴与2型糖尿病相关性的研究进展[J]. 内科理论与实践, 2021, 16(06): 418-421.
[1] | International Diabetes Federation. IDF diabetes atlas.[DB/OL]. 8th ed. 2019. https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html. |
[2] | 卢苇, 关历, 凌仲春, 等. 浅述2型糖尿病的发病机制[J]. 影像研究与医学应用, 2017, 1(9): 168-170. |
[3] |
Bauer KC, Huus KE, Finlay BB. Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis[J]. Cell Microbiol, 2016, 18(5): 632-644.
doi: 10.1111/cmi.12585 URL |
[4] |
Romijn JA, Corssmit EP, Havekes LM, et al. Gut-brain axis[J]. Curr Opin Clin Nutr Metab Care, 2008, 11(4): 518-521.
doi: 10.1097/MCO.0b013e328302c9b0 URL |
[5] |
Westfall S, Lomis N, Kahouli I, et al. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis[J]. Cell Mol Life Sci, 2017, 74(20): 3769-3787.
doi: 10.1007/s00018-017-2550-9 pmid: 28643167 |
[6] |
Depoortere I. Taste receptors of the gut: emerging roles in health and disease[J]. Gut, 2014, 63(1): 179-190.
doi: 10.1136/gutjnl-2013-305112 pmid: 24131638 |
[7] |
Giuffrè M, Moretti R, Campisciano G, et al. You talking to me? Says the enteric nervous system (ENS) to the microbe. How intestinal microbes interact with the ENS[J]. J Clin Med, 2020, 9(11): 3705.
doi: 10.3390/jcm9113705 URL |
[8] |
Fournel A, Drougard A, Duparc T, et al. Apelin targets gut contraction to control glucose metabolism via the brain[J]. Gut, 2017, 66(2): 258-269.
doi: 10.1136/gutjnl-2015-310230 pmid: 26565000 |
[9] |
Grasset E, Burcelin R. The gut microbiota to the brain axis in the metabolic control[J]. Rev Endocr Metab Disord, 2019, 20(4): 427-438.
doi: 10.1007/s11154-019-09511-1 URL |
[10] |
Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013.
doi: 10.1152/physrev.00018.2018 pmid: 31460832 |
[11] |
Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis[J]. Front Neurosci, 2018, 12: 49.
doi: 10.3389/fnins.2018.00049 URL |
[12] |
Sjölund K, Sandén G, Håkanson R, et al. Endocrine cells in human intestine: an immunocytochemical study[J]. Gastroenterology, 1983, 85(5): 1120-1130.
pmid: 6194039 |
[13] |
Andrews ZB, Liu ZW, Walllingford N, et al. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals[J]. Nature, 2008, 454(7206): 846-851.
doi: 10.1038/nature07181 URL |
[14] |
Poher AL, Tschöp MH, Müller TD. Ghrelin regulation of glucose metabolism[J]. Peptides, 2018, 100: 236-242.
doi: 10.1016/j.peptides.2017.12.015 URL |
[15] | Tran KL, Park YI, Pandya S, et al. Overview of glucagon-like peptide-1 receptor agonists for the treatment of patients with type 2 diabetes[J]. Am Health Drug Benefits, 2017, 10(4): 178-188. |
[16] |
Samms RJ, Coghlan MP, Sloop KW. How may GIP enhance the therapeutic efficacy of GLP-1?[J]. Trends Endocrinol Metab, 2020, 31(6): 410-421.
doi: 10.1016/j.tem.2020.02.006 URL |
[17] |
Thomas MK, Nikooienejad A, Bray R, et al. Dual GIP and GLP-1 receptor agonist tirzepatide improves beta-cell function and insulin sensitivity in type 2 diabetes[J]. J Clin Endocrinol Metab, 2021, 106(2): 388-396.
doi: 10.1210/clinem/dgaa863 URL |
[18] |
Nyborg NCB, Kirk RK, de Boer AS, et al. Cholecystokinin-1 receptor agonist induced pathological findings in the exocrine pancreas of non-human primates[J]. Toxicol Appl Pharmacol, 2020, 399: 115035.
doi: 10.1016/j.taap.2020.115035 URL |
[19] | Ahrén B, Holst JJ, Efendic S. Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes[J]. J Clin Endocrinol Metab, 2000, 85(3): 1043-1048. |
[20] |
Steinert RE, Feinle-Bisset C, Asarian L, et al. Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB[J]. Physiol Rev, 2017, 97(1): 411-463.
doi: 10.1152/physrev.00031.2014 pmid: 28003328 |
[21] |
Holzer P, Farzi A. Neuropeptides and the microbiota-gut-brain axis[J]. Adv Exp Med Biol, 2014, 817: 195-219.
doi: 10.1007/978-1-4939-0897-4_9 pmid: 24997035 |
[22] |
Li X, Hu J, Zhang R, et al. Urocortin ameliorates diabetic nephropathy in obese db/db mice[J]. Br J Pharmacol, 2008, 154(5): 1025-1034.
doi: 10.1038/bjp.2008.155 URL |
[23] |
Tirabassi G, Corona G, Lamonica GR, et al. Diabetes mellitus-associated functional hypercortisolism impairs sexual function in male late-onset hypogonadism[J]. Horm Metab Res, 2016, 48(1): 48-53.
doi: 10.1055/s-0035-1548870 pmid: 25951320 |
[24] |
Farzi A, Hassan AM, Zenz G, et al. Diabesity and mood disorders: multiple links through the microbiota-gut-brain axis[J]. Mol Aspects Med, 2019, 66: 80-93.
doi: 10.1016/j.mam.2018.11.003 URL |
[25] |
Larraufie P, Martin-Gallausiaux C, Lapaque N, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells[J]. Sci Rep, 2018, 8(1): 74.
doi: 10.1038/s41598-017-18259-0 pmid: 29311617 |
[26] |
Xu Y, Zhou H, Zhu Q. The impact of microbiota-gut-brain axis on diabetic cognition impairment[J]. Front Aging Neurosci, 2017, 9: 106.
doi: 10.3389/fnagi.2017.00106 URL |
[27] |
Margolis KG, Cryan JF, Mayer EA. The microbiota-gut-brain axis: from motility to mood[J]. Gastroenterology, 2021, 160(5): 1486-1501.
doi: 10.1053/j.gastro.2020.10.066 pmid: 33493503 |
[28] |
Martin AM, Yabut JM, Choo JM, et al. The gut microbiome regulates host glucose homeostasis via peripheral serotonin[J]. Proc Natl Acad Sci U S A, 2019, 116(40): 19802-19804.
doi: 10.1073/pnas.1909311116 pmid: 31527237 |
[29] |
Wu J, Wang K, Wang X, et al. The role of the gut microbiome and its metabolites in metabolic diseases[J]. Protein Cell, 2021, 12(5): 360-373.
doi: 10.1007/s13238-020-00814-7 URL |
[30] |
Gu Y, Wang X, Li J, et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment[J]. Nat Commun, 2017, 8(1): 1785.
doi: 10.1038/s41467-017-01682-2 URL |
[31] |
Talukdar S, Oh DY, Bandyopadhyay G, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase[J]. Nat Med, 2012, 18(9): 1407-1412.
pmid: 22863787 |
[32] | American Diabetes Association. Standards of medical care in diabetes—2013[J]. Diabetes Care, 2013, 36 Suppl 1: S11-S66. |
[33] |
Ferracini M, Martins JO, Campos MR, et al. Impaired phagocytosis by alveolar macrophages from diabetic rats is related to the deficient coupling of LTs to the FcγR signaling cascade[J]. Mol Immunol, 2010, 47(11-12): 1974-1980.
doi: 10.1016/j.molimm.2010.04.018 pmid: 20510456 |
[1] | 陈聪燕, 王俊青, 陈拥军. 肠道菌群与肝癌的发病机制[J]. 外科理论与实践, 2022, 27(3): 256-260. |
[2] | 许晴, 邵慧英, 陈帅, 全进伟, 周清芬, 王敏慧. 延续健康教育和指导对干预2型糖尿病患者冠状动脉斑块进展的影响[J]. 内科理论与实践, 2022, 17(04): 330-333. |
[3] | 高晶晶, 高艳虹. 早发2型糖尿病流行病学、临床特征及病因机制的研究进展[J]. 内科理论与实践, 2022, 17(04): 344-348. |
[4] | 许飞, 尹明月, 王伟, 董治亚, 陆文丽, 余熠, 王歆琼, 王俊祺, 肖园. 性早熟女童肠道菌群和抗生素耐药性的宏基因组分析[J]. 诊断学理论与实践, 2022, 21(01): 52-61. |
[5] | 毕宇芳. 2型糖尿病的全生命周期危险因素研究现状[J]. 内科理论与实践, 2021, 16(06): 373-375. |
[6] | 李林, 安静静, 王俊祺, 王歆琼, 董治亚. 16S rRNA第二代测序技术分析特发性身材矮小儿童肠道菌群构成的特征及相关发病机制研究[J]. 诊断学理论与实践, 2021, 20(02): 149-154. |
[7] | 李惠, 冯洁, 韩立中. 高通量测序技术分析无特定病原体级实验小鼠肠道的菌群组成[J]. 诊断学理论与实践, 2020, 19(1): 55-62. |
[8] | 张晨阳, 张弘玮, 韩晓东, 刘伟杰, 于浩泳, 张频. 腹腔镜Roux-en-Y胃旁路术与腹腔镜袖状胃切除术减重与改善代谢紊乱的比较研究[J]. 外科理论与实践, 2020, 25(05): 397-401. |
[9] | 田沛荣, 刘洋, 边识博, 李梦伊, 张萌, 刘佳, 金岚, 张忠涛, 张鹏. 减重代谢手术对贫血相关指标影响的回顾性研究[J]. 外科理论与实践, 2020, 25(05): 413-416. |
[10] | 安静静, 王俊祺, 肖园, 陆文丽, 李林, 王伟, 董治亚. 16S rRNA高通量测序分析肠道菌群对小于胎龄大鼠生长追赶的影响及其可能的机制[J]. 诊断学理论与实践, 2020, 19(04): 375-380. |
[11] | 张雪莹, 秦环龙. 肠道菌群作为结肠直肠癌生物标志物及其干预的临床意义[J]. 外科理论与实践, 2020, 25(02): 155-158. |
[12] | 李明杰, 康建华, 林宁, 金杰, 简蔚霞, 苏青,. 2型糖尿病患者胰岛β细胞功能与心率变异性的关联研究[J]. 内科理论与实践, 2020, 15(02): 99-104. |
[13] | 郑旭辉, 李新立,. 钠-葡萄糖协同转运蛋白2抑制剂的研究进展及治疗心力衰竭的机制探讨[J]. 内科理论与实践, 2020, 15(02): 120-123. |
[14] | 李淑雨, 沈琳辉,. 2型糖尿病患者参考范围甲状腺激素与糖尿病肾病的相关性分析[J]. 内科理论与实践, 2020, 15(01): 38-44. |
[15] | 陈瑶瑶, 顾爱华. 氧化三甲胺与心血管疾病关系的研究进展[J]. 诊断学理论与实践, 2019, 18(2): 237-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||