实验性血管炎动物模型研究进展
收稿日期: 2020-09-09
网络出版日期: 2022-07-26
基金资助
国家自然科学基金项目(81470041);国家自然科学基金项目(81000285)
魏兆楠, 陈永熙 . 实验性血管炎动物模型研究进展[J]. 内科理论与实践, 2021 , 16(01) : 53 -59 . DOI: 10.16138/j.1673-6087.2021.01.012
[1] | Kitching AR, Anders HJ, Basu N, et al. ANCA-associated vasculitis[J]. Nat Rev Dis Primers, 2020, 6(1): 71. |
[2] | Kronbichler A, Shin JI, Lee KH, et al. Clinical associations of renal involvement in ANCA-associated vasculitis[J]. Autoimmun Rev, 2020, 19(4):102495. |
[3] | Centenera MM, Scott JS, Machiels J, et al. ELOVL5 is a critical and targetable fatty acid elongase in prostate cancer[J]. Cancer Res, 2021. [Epub ahead of print]. |
[4] | 陈楠, 陈永熙. ANCA相关性小血管炎的肾外表现[J]. 临床肾脏病杂志, 2008, 28(5): 203-205. |
[5] | Chen YX, Yu HJ, Zhang W, et al. Analyzing fatal cases of Chinese patients with primary antineutrophil cytoplasmic antibodies-associated renal vasculitis: a 10-year retrospective study[J]. Kidney Blood Press Res, 2008, 31(5): 343-349. |
[6] | Chen YX, Chen N. Pathogenesis of rapidly progressive glomerulonephritis: what do we learn[J]?. Contrib Nephrol, 2013, 181: 207-215. |
[7] | Chen YX, Chen XN. Antineutrophil cytoplasmic antibodies-associated glomerulonephritis: From bench to bedside[J]. Chronic Dis Transl Med, 2018, 4(3): 187-191. |
[8] | Chen YX, Xu J, Pan XX, et al. Histopathological classification and renal outcome in patients with antineutrophil cytoplasmic antibodies-associated renal vasculitis: a study of 186 patients and metaanalysis[J]. J Rheumatol, 2017, 44(3): 304-313. |
[9] | Chen YX, Yu HJ, Ni LY, et al. Propylthiouracil-associated antineutrophil cytoplasmic autoantibody-positive vasculitis: retrospective study of 19 cases[J]. J Rheumatol, 2007, 34(12): 2451-2456. |
[10] | Chen YX, Zhang W, Chen XN, et al. Propylthiouracil-induced antineutrophil cytoplasmic antibody (ANCA)-associated renal vasculitis versus primary ANCA-associated renal vasculitis: a comparative study[J]. J Rheumatol, 2012, 39(3): 558-563. |
[11] | Ramponi G, Folci M, De Santis M, et al. The biology, pathogenetic role, clinical implications, and open issues of serum anti-neutrophil cytoplasmic antibodies[J]. Autoimmun Rev, 2021. [Epub ahead of print]. |
[12] | Nakazawa D, Masuda S, Tomaru U, et al. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis[J]. Nat Rev Rheumatol, 2019, 15(2): 91-101. |
[13] | Esnault VL, Mathieson PW, Thiru S, et al. Autoantibodies to myeloperoxidase in brown Norway rats treated with mercuric chloride[J]. Lab Invest, 1992, 67(1): 114-120. |
[14] | Kinjoh K, Kyogoku M, Good RA. Genetic selection for crescent formation yields mouse strain with rapidly progressive glomerulonephritis and small vessel vasculitis[J]. Proc Natl Acad Sci U S A, 1993, 90(8): 3413-3417. |
[15] | Kobayashi K, Shibata T, Sugisaki T. Aggravation of rat nephrotoxic serum nephritis by anti-myeloperoxidase antibodies[J]. Kidney Int, 1995, 47(2): 454-463. |
[16] | Heeringa P, Brouwer E, Klok PA, et al. Autoantibodies to myeloperoxidase aggravate mild anti-glomerular-basement-membrane-mediated glomerular injury in the rat[J]. Am J Pathol, 1996, 149(5): 1695-1706. |
[17] | Brouwer E, Huitema MG, Klok PA, et al. Antimyeloperoxidase-associated proliferative glomerulonephritis: an animal model[J]. J Exp Med, 1993, 177(4): 905-914. |
[18] | Hutton HL, Holdsworth SR, Kitching AR. ANCA-associated vasculitis: pathogenesis, models, and preclinical testing[J]. Semin Nephrol, 2017, 37(5):418-435. |
[19] | Little MA, Smyth CL, Yadav R, et al. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo[J]. Blood, 2005, 106(6): 2050-2058. |
[20] | Ruth AJ, Kitching AR, Kwan RY, et al. Anti-neutrophil cytoplasmic antibodies and effector CD4+ cells play nonredundant roles in anti-myeloperoxidase crescentic glomerulonephritis[J]. J Am Soc Nephrol, 2006, 17(7):1940-1949. |
[21] | Chang J, Eggenhuizen P, O’sullivan KM, et al. CD8+ T cells effect glomerular injury in experimental anti-myeloperoxidase GN[J]. J Am Soc Nephrol, 2017, 28(1): 47-55. |
[22] | Gan PY, O’sullivan KM, Ooi JD, et al. Mast cell stabilization ameliorates autoimmune anti-myeloperoxidase glomerulonephritis[J]. J Am Soc Nephrol, 2016, 27(5): 1321-1233. |
[23] | Odobasic D, Oudin V, Ito K, et al. Tolerogenic dendritic cells attenuate experimental autoimmune antimyeloperoxidase glomerulonephritis[J]. J Am Soc Nephrol, 2019, 30(11): 2140-2157. |
[24] | Gan PY, Chan A, Ooi JD, et al. Biologicals targeting T helper cell subset differentiating cytokines are effective in the treatment of murine anti-myeloperoxidase glomerulonephritis[J]. Kidney Int, 2019, 96(5): 1121-1133. |
[25] | Ooi JD, Jiang JH, Eggenhuizen PJ, et al. A plasmid-encoded peptide from Staphylococcus aureus induces anti-myeloperoxidase nephritogenic autoimmunity[J]. Nat Commun, 2019, 10(1): 3392. |
[26] | Ooi JD, Gan PY, Chen T, et al. FcγRIIB regulates T-cell autoreactivity, ANCA production, and neutrophil activation to suppress anti-myeloperoxidase glomerulonephritis[J]. Kidney Int, 2014, 86(6): 1140-1149. |
[27] | Xiao H, Heeringa P, Hu P, et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice[J]. J Clin Invest, 2002, 110(7): 955-963. |
[28] | 安晓宁, 陈永熙. 单核-巨噬细胞在抗中性粒细胞胞浆抗体相关性血管炎中作用的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(1): 123-127. |
[29] | Rousselle A, Kettritz R, Schreiber A. Monocytes promote crescent formation in anti-myeloperoxidase antibody-induced glomerulonephritis[J]. Am J Pathol, 2017, 187(9): 1908-1915. |
[30] | Hu P, Su H, Xiao H, et al. Kinin B1 receptor is important in the pathogenesis of myeloperoxidase-specific ANCA GN[J]. J Am Soc Nephrol, 2020, 31(2):297-307. |
[31] | Choi M, Schreiber A, Eulenberg-Gustavus C, et al. Endothelial NF-κB blockade abrogates ANCA-induced GN[J]. J Am Soc Nephrol, 2017, 28(11): 3191-3204. |
[32] | Wang Q, van Timmeren MM, Petersen AH, et al. Age-determined severity of anti-myeloperoxidase autoantibody-mediated glomerulonephritis in mice[J]. Nephrol Dial Transplant, 2017, 32(2): 254-264. |
[33] | Xiao H, Ciavatta D, Aylor DL, et al. Genetically determined severity of anti-myeloperoxidase glomerulonephritis[J]. Am J Pathol, 2013, 182(4): 1219-1226. |
[34] | Schreiber A, Xiao H, Falk RJ, et al. Bone marrow-derived cells are sufficient and necessary targets to mediate glomerulonephritis and vasculitis induced by anti-myeloperoxidase antibodies[J]. J Am Soc Nephrol, 2006, 17(12): 3355-3364. |
[35] | Ooi JD, Chang J, Hickey MJ, et al. The immunodominant myeloperoxidase T-cell epitope induces local cell-mediated injury in antimyeloperoxidase glomerulonephritis[J]. Proc Natl Acad Sci U S A, 2012, 109(39): E2615-E2624. |
[36] | Gan PY, Holdsworth SR, Kitching AR, et al. Myeloperoxidase (MPO)-specific CD4+ T cells contribute to MPO-anti-neutrophil cytoplasmic antibody (ANCA) associated glomerulonephritis[J]. Cell Immunol, 2013, 282(1): 21-27. |
[37] | Pfister H, Ollert M, Fröhlich LF, et al. Antineutrophil cytoplasmic autoantibodies against the murine homolog of proteinase 3 (Wegener autoantigen) are pathogenic in vivo[J]. Blood, 2004, 104(5): 1411-1418. |
[38] | van Der Geld YM, Hellmark T, Selga D, et al. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes[J]. Ann Rheum Dis, 2007, 66(12): 1679-1682. |
[39] | Primo VC, Marusic S, Franklin CC, et al. Anti-PR3 immune responses induce segmental and necrotizing glomerulonephritis[J]. Clin Exp Immunol, 2010, 159(3): 327-337. |
[40] | Little MA, Al-Ani B, Ren S, et al. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system[J]. PLoS One, 2012, 7(1): e28626. |
[41] | Li N, Zhu B, Zhu Q, et al. Serum lysosomal-associated membrane protein-2 levels are increased in small and medium-vessel vasculitis, especially in polyarteritis nodosa[J]. Clin Exp Rheumatol, 2019, 37 Suppl 117(2):79-85. |
[42] | Tang S, Zhang Y, Yin SW, et al. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis[J]. Clin Exp Immunol, 2015, 180(3): 408-418. |
[43] | Sangaletti S, Tripodo C, Chiodoni C, et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity[J]. Blood, 2012, 120(15): 3007-3018. |
[44] | Nakazawa D, Tomaru U, Suzuki A, et al. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis[J]. Arthritis Rheum, 2012, 64(11): 3779-3787. |
[45] | Martin KR, Pederzoli-Ribeil M, Pacreau E, et al. Transgenic mice expressing human proteinase 3 exhibit sustained neutrophil-associated peritonitis[J]. J Immunol, 2017, 199(11): 3914-3924. |
[46] | Merkel PA, Xie G, Monach PA, et al. Identification of functional and expression polymorphisms associated with risk for antineutrophil cytoplasmic autoantibody-associated vasculitis[J]. Arthritis Rheumatol, 2017, 69(5):1054-1066. |
[47] | Nusser A, Nuber N, Wirz OF, et al. The development of autoimmune features in aging mice is closely associated with alterations of the peripheral CD4+ T-cell compartment[J]. Eur J Immunol, 2014, 44(10): 2893-2902. |
[48] | Tao L, Reese TA. Making mouse models that reflect human immune responses[J]. Trends Immunol, 2017, 38(3):181-193. |
/
〈 |
|
〉 |