内科理论与实践 ›› 2021, Vol. 16 ›› Issue (01): 53-59.doi: 10.16138/j.1673-6087.2021.01.012
收稿日期:
2020-09-09
出版日期:
2021-02-25
发布日期:
2022-07-26
通讯作者:
陈永熙
E-mail:rickychen@sjtu.edu.cn
基金资助:
Received:
2020-09-09
Online:
2021-02-25
Published:
2022-07-26
中图分类号:
魏兆楠, 陈永熙. 实验性血管炎动物模型研究进展[J]. 内科理论与实践, 2021, 16(01): 53-59.
表1
MPO-AAV相关性实验性血管炎动物模型
模型 | 动物 | 建模方法 | 机制 | 模型特点 | 研究方向 |
---|---|---|---|---|---|
ANCA相关EAV | WKY大鼠 | hMPO免疫WKY大鼠 | 主动免疫MPO诱导抗MPO抗体反应 | 主动免疫打破了自身耐受,且无需其他干预措施;但使用该方法仅能在WKY大鼠品系中建模成功,且与人类疾病相比病理改变轻微 | 固有免疫在发病中的机制 |
抗GBM抗体激活的主动免疫性小鼠模型 | C57BL/6小鼠 | hMPO免疫C57BL/6小鼠后给予低于致肾炎剂量的羊抗鼠GBM抗体 | 主动免疫MPO诱导抗MPO抗体反应 | 主动免疫打破了自身免疫耐受,建模周期较短;但需要外源性免疫球蛋白(抗GBM抗体)的刺激以引发疾病,仅适用于AAV病程早期的相关研究 | 固有免疫在发病中的机制 |
基于MPO-/-小鼠的MPO-ANCA被动转移模型 | C57BL/6野生型或Rag2-/- 小鼠 | 小鼠MPO免疫MPO-/-小鼠获得MPO-ANCA,再将MPO-ANCA转移至野生型或Rag2-/-小鼠体内 | 被动免疫MPO-ANCA与表达MPO的中性粒细胞相互作用 | 可用于研究ANCA的直接作用,且建模周期短,重复性好;但未打破免疫耐受,不属于真正意义上的自身免疫疾病 | ANCA直接致病机制 |
基于MPO-/-小鼠的抗MPO脾细胞被动转移模型 | C57BL/6 Rag2-/-小鼠 | 小鼠MPO免疫MPO-/-小鼠获得抗MPO脾细胞,再将抗MPO脾细胞转移至野生型或Rag2-/-小鼠体内 | MPO特异性T细胞、B细胞介导损伤 | 病理改变较其他模型严重,更接近人类疾病;不属于真正意义上的自身免疫疾病,向免疫缺陷小鼠中转移的脾细胞出现异常增生,并导致肾小球中有免疫复合物沉积 | 免疫细胞(T、B、中性粒细胞)在ANCA相关性血管炎发病机制及作用 |
MPO-/-小鼠辐照后MPO+/+骨髓移植模型 | C57BL/6 MPO-/-小鼠辐照后接受MPO+/+骨髓移植 | 小鼠MPO免疫MPO-/-小鼠诱导MPO-ANCA,经辐照和骨髓移植引入MPO+/+中性粒细胞 | MPO-ANCA与MPO+/+中性粒细胞相互作用 | 不必从小鼠血清中分离ANCA,实现了ANCA的持续产生,可用于研究ANCA的直接作用;但与ANCA相互作用的中性粒细胞来自异体,不属于真正意义上的自身免疫疾病,且建模方法复杂,周期长而病理改变轻微 | |
MPO特异性T细胞转移模型 | C57BL/6 Rag1-/-小鼠 | MPO或MPO T细胞表位免疫小鼠获得MPO特异性T细胞,再将其被动转移至Rag1-/-小鼠体内后通过沉积MPO诱发疾病 | MPO特异性T细胞识别肾小球中沉积的MPO介导疾病 | 可用于研究细胞免疫在AAV中的作用;不属于真正意义上的自身免疫疾病,建模方法复杂,未提及是否有免疫复合物形成,Rag1-/-小鼠具有的免疫缺陷在AAV患者中并不存在 |
表2
PR3-AAV相关性实验性血管炎动物模型
模型 | 动物 | 建模方法 | 机制 | 模型特点 | 研究方向 |
---|---|---|---|---|---|
重组小鼠PR3-ANCA被动转移模型 | 129/SvEv小鼠 | 重组mPR3免疫mPR3/mNE双基因敲除小鼠获得PR3-ANCA,再将PR3-ANCA转移至野生型小鼠体内 | PR3-ANCA与中性粒细胞相互作用 | 仅加重了TNF-α诱发的局部炎症反应,并未引起血管炎 | 中性粒细胞在疾病发病中机制及作用 |
PR3免疫的NOD小鼠脾细胞被动转移至NOD/SCID小鼠模型 | NOD/SCID小鼠 | mPR3免疫NOD小鼠获得抗PR3脾细胞,再将抗PR3脾细胞转移至NOD/SCID小鼠体内 | PR3特异性T细胞、B细胞介导损伤 | 出现了新月体性肾小球肾炎相关症状;不属于真正意义上的自身免疫,仅有肾脏症状而缺乏人类PR3-AAV的肺部症状,且小鼠的免疫缺陷状态与人类患者不相符 | T、B细胞在疾病发病中作用及机制 |
PR3-ANCA被动转移至人源化嵌合小鼠模型 | 人源化NOD/SCID/IL-2R-/-小鼠 | 将人造血干细胞注射到受辐照的NOD/SCID/IL-2R-/-小鼠体内建立人源化小鼠,然后接受人类患者PR3-ANCA | 人PR3-ANCA与来自人造血干细胞的中性粒细胞和单核细胞相互作用 | 可用于研究PR3-ANCA的直接作用,出现了与人类疾病相似的肺部和肾脏症状;但建模过程复杂而疾病症状较为轻微,小鼠的免疫缺陷状态与人类患者亦不相符 | 中性粒细胞和单核细胞在疾病发病中作用及机制 |
[1] |
Kitching AR, Anders HJ, Basu N, et al. ANCA-associated vasculitis[J]. Nat Rev Dis Primers, 2020, 6(1): 71.
doi: 10.1038/s41572-020-0204-y pmid: 32855422 |
[2] |
Kronbichler A, Shin JI, Lee KH, et al. Clinical associations of renal involvement in ANCA-associated vasculitis[J]. Autoimmun Rev, 2020, 19(4):102495.
doi: 10.1016/j.autrev.2020.102495 URL |
[3] | Centenera MM, Scott JS, Machiels J, et al. ELOVL5 is a critical and targetable fatty acid elongase in prostate cancer[J]. Cancer Res, 2021. [Epub ahead of print]. |
[4] | 陈楠, 陈永熙. ANCA相关性小血管炎的肾外表现[J]. 临床肾脏病杂志, 2008, 28(5): 203-205. |
[5] |
Chen YX, Yu HJ, Zhang W, et al. Analyzing fatal cases of Chinese patients with primary antineutrophil cytoplasmic antibodies-associated renal vasculitis: a 10-year retrospective study[J]. Kidney Blood Press Res, 2008, 31(5): 343-349.
doi: 10.1159/000165117 URL |
[6] | Chen YX, Chen N. Pathogenesis of rapidly progressive glomerulonephritis: what do we learn[J]?. Contrib Nephrol, 2013, 181: 207-215. |
[7] | Chen YX, Chen XN. Antineutrophil cytoplasmic antibodies-associated glomerulonephritis: From bench to bedside[J]. Chronic Dis Transl Med, 2018, 4(3): 187-191. |
[8] |
Chen YX, Xu J, Pan XX, et al. Histopathological classification and renal outcome in patients with antineutrophil cytoplasmic antibodies-associated renal vasculitis: a study of 186 patients and metaanalysis[J]. J Rheumatol, 2017, 44(3): 304-313.
doi: 10.3899/jrheum.160866 URL |
[9] | Chen YX, Yu HJ, Ni LY, et al. Propylthiouracil-associated antineutrophil cytoplasmic autoantibody-positive vasculitis: retrospective study of 19 cases[J]. J Rheumatol, 2007, 34(12): 2451-2456. |
[10] |
Chen YX, Zhang W, Chen XN, et al. Propylthiouracil-induced antineutrophil cytoplasmic antibody (ANCA)-associated renal vasculitis versus primary ANCA-associated renal vasculitis: a comparative study[J]. J Rheumatol, 2012, 39(3): 558-563.
doi: 10.3899/jrheum.110931 URL |
[11] | Ramponi G, Folci M, De Santis M, et al. The biology, pathogenetic role, clinical implications, and open issues of serum anti-neutrophil cytoplasmic antibodies[J]. Autoimmun Rev, 2021. [Epub ahead of print]. |
[12] |
Nakazawa D, Masuda S, Tomaru U, et al. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis[J]. Nat Rev Rheumatol, 2019, 15(2): 91-101.
doi: 10.1038/s41584-018-0145-y pmid: 30542206 |
[13] |
Esnault VL, Mathieson PW, Thiru S, et al. Autoantibodies to myeloperoxidase in brown Norway rats treated with mercuric chloride[J]. Lab Invest, 1992, 67(1): 114-120.
pmid: 1320710 |
[14] |
Kinjoh K, Kyogoku M, Good RA. Genetic selection for crescent formation yields mouse strain with rapidly progressive glomerulonephritis and small vessel vasculitis[J]. Proc Natl Acad Sci U S A, 1993, 90(8): 3413-3417.
pmid: 8475090 |
[15] |
Kobayashi K, Shibata T, Sugisaki T. Aggravation of rat nephrotoxic serum nephritis by anti-myeloperoxidase antibodies[J]. Kidney Int, 1995, 47(2): 454-463.
pmid: 7723233 |
[16] |
Heeringa P, Brouwer E, Klok PA, et al. Autoantibodies to myeloperoxidase aggravate mild anti-glomerular-basement-membrane-mediated glomerular injury in the rat[J]. Am J Pathol, 1996, 149(5): 1695-1706.
pmid: 8909258 |
[17] |
Brouwer E, Huitema MG, Klok PA, et al. Antimyeloperoxidase-associated proliferative glomerulonephritis: an animal model[J]. J Exp Med, 1993, 177(4): 905-914.
doi: 10.1084/jem.177.4.905 pmid: 8384653 |
[18] |
Hutton HL, Holdsworth SR, Kitching AR. ANCA-associated vasculitis: pathogenesis, models, and preclinical testing[J]. Semin Nephrol, 2017, 37(5):418-435.
doi: S0270-9295(17)30055-4 pmid: 28863790 |
[19] |
Little MA, Smyth CL, Yadav R, et al. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte-microvascular interactions in vivo[J]. Blood, 2005, 106(6): 2050-2058.
doi: 10.1182/blood-2005-03-0921 pmid: 15933057 |
[20] |
Ruth AJ, Kitching AR, Kwan RY, et al. Anti-neutrophil cytoplasmic antibodies and effector CD4+ cells play nonredundant roles in anti-myeloperoxidase crescentic glomerulonephritis[J]. J Am Soc Nephrol, 2006, 17(7):1940-1949.
doi: 10.1681/ASN.2006020108 URL |
[21] |
Chang J, Eggenhuizen P, O’sullivan KM, et al. CD8+ T cells effect glomerular injury in experimental anti-myeloperoxidase GN[J]. J Am Soc Nephrol, 2017, 28(1): 47-55.
doi: 10.1681/ASN.2015121356 URL |
[22] |
Gan PY, O’sullivan KM, Ooi JD, et al. Mast cell stabilization ameliorates autoimmune anti-myeloperoxidase glomerulonephritis[J]. J Am Soc Nephrol, 2016, 27(5): 1321-1233.
doi: 10.1681/ASN.2014090906 URL |
[23] |
Odobasic D, Oudin V, Ito K, et al. Tolerogenic dendritic cells attenuate experimental autoimmune antimyeloperoxidase glomerulonephritis[J]. J Am Soc Nephrol, 2019, 30(11): 2140-2157.
doi: 10.1681/ASN.2019030236 pmid: 31444274 |
[24] |
Gan PY, Chan A, Ooi JD, et al. Biologicals targeting T helper cell subset differentiating cytokines are effective in the treatment of murine anti-myeloperoxidase glomerulonephritis[J]. Kidney Int, 2019, 96(5): 1121-1133.
doi: 10.1016/j.kint.2019.05.012 URL |
[25] |
Ooi JD, Jiang JH, Eggenhuizen PJ, et al. A plasmid-encoded peptide from Staphylococcus aureus induces anti-myeloperoxidase nephritogenic autoimmunity[J]. Nat Commun, 2019, 10(1): 3392.
doi: 10.1038/s41467-019-11255-0 URL |
[26] |
Ooi JD, Gan PY, Chen T, et al. FcγRIIB regulates T-cell autoreactivity, ANCA production, and neutrophil activation to suppress anti-myeloperoxidase glomerulonephritis[J]. Kidney Int, 2014, 86(6): 1140-1149.
doi: 10.1038/ki.2014.189 URL |
[27] |
Xiao H, Heeringa P, Hu P, et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice[J]. J Clin Invest, 2002, 110(7): 955-963.
doi: 10.1172/JCI0215918 URL |
[28] | 安晓宁, 陈永熙. 单核-巨噬细胞在抗中性粒细胞胞浆抗体相关性血管炎中作用的研究进展[J]. 上海交通大学学报(医学版), 2020, 40(1): 123-127. |
[29] |
Rousselle A, Kettritz R, Schreiber A. Monocytes promote crescent formation in anti-myeloperoxidase antibody-induced glomerulonephritis[J]. Am J Pathol, 2017, 187(9): 1908-1915.
doi: S0002-9440(17)30018-4 pmid: 28667835 |
[30] |
Hu P, Su H, Xiao H, et al. Kinin B1 receptor is important in the pathogenesis of myeloperoxidase-specific ANCA GN[J]. J Am Soc Nephrol, 2020, 31(2):297-307.
doi: 10.1681/ASN.2019010032 URL |
[31] |
Choi M, Schreiber A, Eulenberg-Gustavus C, et al. Endothelial NF-κB blockade abrogates ANCA-induced GN[J]. J Am Soc Nephrol, 2017, 28(11): 3191-3204.
doi: 10.1681/ASN.2016060690 URL |
[32] | Wang Q, van Timmeren MM, Petersen AH, et al. Age-determined severity of anti-myeloperoxidase autoantibody-mediated glomerulonephritis in mice[J]. Nephrol Dial Transplant, 2017, 32(2): 254-264. |
[33] |
Xiao H, Ciavatta D, Aylor DL, et al. Genetically determined severity of anti-myeloperoxidase glomerulonephritis[J]. Am J Pathol, 2013, 182(4): 1219-1226.
doi: 10.1016/j.ajpath.2012.12.006 URL |
[34] |
Schreiber A, Xiao H, Falk RJ, et al. Bone marrow-derived cells are sufficient and necessary targets to mediate glomerulonephritis and vasculitis induced by anti-myeloperoxidase antibodies[J]. J Am Soc Nephrol, 2006, 17(12): 3355-3364.
pmid: 17108314 |
[35] | Ooi JD, Chang J, Hickey MJ, et al. The immunodominant myeloperoxidase T-cell epitope induces local cell-mediated injury in antimyeloperoxidase glomerulonephritis[J]. Proc Natl Acad Sci U S A, 2012, 109(39): E2615-E2624. |
[36] |
Gan PY, Holdsworth SR, Kitching AR, et al. Myeloperoxidase (MPO)-specific CD4+ T cells contribute to MPO-anti-neutrophil cytoplasmic antibody (ANCA) associated glomerulonephritis[J]. Cell Immunol, 2013, 282(1): 21-27.
doi: 10.1016/j.cellimm.2013.04.007 URL |
[37] |
Pfister H, Ollert M, Fröhlich LF, et al. Antineutrophil cytoplasmic autoantibodies against the murine homolog of proteinase 3 (Wegener autoantigen) are pathogenic in vivo[J]. Blood, 2004, 104(5): 1411-1418.
doi: 10.1182/blood-2004-01-0267 pmid: 15150076 |
[38] |
van Der Geld YM, Hellmark T, Selga D, et al. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes[J]. Ann Rheum Dis, 2007, 66(12): 1679-1682.
doi: 10.1136/ard.2006.064626 URL |
[39] |
Primo VC, Marusic S, Franklin CC, et al. Anti-PR3 immune responses induce segmental and necrotizing glomerulonephritis[J]. Clin Exp Immunol, 2010, 159(3): 327-337.
doi: 10.1111/j.1365-2249.2009.04072.x pmid: 20015271 |
[40] |
Little MA, Al-Ani B, Ren S, et al. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system[J]. PLoS One, 2012, 7(1): e28626.
doi: 10.1371/journal.pone.0028626 URL |
[41] | Li N, Zhu B, Zhu Q, et al. Serum lysosomal-associated membrane protein-2 levels are increased in small and medium-vessel vasculitis, especially in polyarteritis nodosa[J]. Clin Exp Rheumatol, 2019, 37 Suppl 117(2):79-85. |
[42] |
Tang S, Zhang Y, Yin SW, et al. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis[J]. Clin Exp Immunol, 2015, 180(3): 408-418.
doi: 10.1111/cei.12589 pmid: 25644394 |
[43] |
Sangaletti S, Tripodo C, Chiodoni C, et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity[J]. Blood, 2012, 120(15): 3007-3018.
doi: 10.1182/blood-2012-03-416156 pmid: 22932797 |
[44] |
Nakazawa D, Tomaru U, Suzuki A, et al. Abnormal conformation and impaired degradation of propylthiouracil-induced neutrophil extracellular traps: implications of disordered neutrophil extracellular traps in a rat model of myeloperoxidase antineutrophil cytoplasmic antibody-associated vasculitis[J]. Arthritis Rheum, 2012, 64(11): 3779-3787.
doi: 10.1002/art.34619 URL |
[45] |
Martin KR, Pederzoli-Ribeil M, Pacreau E, et al. Transgenic mice expressing human proteinase 3 exhibit sustained neutrophil-associated peritonitis[J]. J Immunol, 2017, 199(11): 3914-3924.
doi: 10.4049/jimmunol.1601522 URL |
[46] |
Merkel PA, Xie G, Monach PA, et al. Identification of functional and expression polymorphisms associated with risk for antineutrophil cytoplasmic autoantibody-associated vasculitis[J]. Arthritis Rheumatol, 2017, 69(5):1054-1066.
doi: 10.1002/art.40034 URL |
[47] |
Nusser A, Nuber N, Wirz OF, et al. The development of autoimmune features in aging mice is closely associated with alterations of the peripheral CD4+ T-cell compartment[J]. Eur J Immunol, 2014, 44(10): 2893-2902.
doi: 10.1002/eji.201344408 pmid: 25044476 |
[48] |
Tao L, Reese TA. Making mouse models that reflect human immune responses[J]. Trends Immunol, 2017, 38(3):181-193.
doi: 10.1016/j.it.2016.12.007 URL |
[1] | 戴梦婷 崔杰. 动静脉畸形动物模型的研究及应用进展[J]. 组织工程与重建外科杂志, 2022, 18(4): 355-. |
[2] | 卢鸿瑞 谢庆平. 淋巴吻合培训动物模型的制备[J]. 组织工程与重建外科杂志, 2022, 18(1): 29-. |
[3] | 杨三红, 邓呈亮. 血管化淋巴结移植动物模型的研究进展[J]. 组织工程与重建外科杂志, 2022, 18(1): 53-. |
[4] | 李玥宁, 程霁婷, 周思恒, 李红鹏, 李庆云,. 肺移植缺血-再灌注损伤动物模型研究进展[J]. 内科理论与实践, 2020, 15(01): 57-60. |
[5] | 王竞颜,章一新. 动物瘢痕模型及其在激光治疗实验中的应用[J]. 组织工程与重建外科杂志, 2019, 15(6): 428-430. |
[6] | 钱进,邓辰亮,杨松林,郑江红. 建立SCID鼠增生性瘢痕模型的实验研究[J]. 组织工程与重建外科杂志, 2018, 14(1): 31-35. |
[7] | 周思政,李青峰. 皮肤创伤愈合和增生性瘢痕动物模型的研究进展[J]. 组织工程与重建外科杂志, 2018, 14(1): 48-52. |
[8] | 康建强, 徐欣欣, 董杨阳, 杨玲, 范嘉盈, 宋珍, 周妍. 哮喘小鼠下呼吸道流感嗜血杆菌定植的研究[J]. 诊断学理论与实践, 2018, 17(01): 102-107. |
[9] | 邢鹏, 刘思梦, 陈孜瑾, 任红, 陈晓农, 李晓. ANCA相关性血管炎肾衰竭患者行急诊血液透析后转归及危险因素[J]. 诊断学理论与实践, 2017, 16(04): 384-389. |
[10] | 王媛媛, 范秋灵, 孙达, 陈莹, 刘林林, 王力宁. 成人起病的过敏性紫癜性肾炎合并抗中性粒细胞胞质抗体相关小血管炎一例报告[J]. 诊断学理论与实践, 2017, 16(02): 231-235. |
[11] | 孙一宇,崔春晓,戴婷婷,蒋朝华,曹卫刚,李圣利. 改良小鼠后肢淋巴水肿模型的构建[J]. 组织工程与重建外科杂志, 2016, 12(6): 349-352. |
[12] | 曹久妹, 吴丽苹, 冯媛媛, 沈卫峰, 陈颖,. 平滑肌肌动蛋白α基因R258C突变转基因小鼠模型的建立[J]. 诊断学理论与实践, 2016, 15(03): 253-257. |
[13] | 李东,黄晓翔,SEAN SHIH-YAO LIU,徐海淞,曹德君,柴岗,韦敏. 骨缝牵引成骨动物模型的建立及应用[J]. 组织工程与重建外科杂志, 2015, 11(1): 14-18. |
[14] | 高源, 吴逸雯, 丁健青, 陈生弟,. 癫痫间发病与脑内5-羟色胺及其受体相关[J]. 内科理论与实践, 2013, 8(06): 441-444. |
[15] | 姜铃霞, 姚伟武, 赵海南, 杨世埙,. 实验性软骨损伤的生物学表达与病理分期对照研究[J]. 诊断学理论与实践, 2013, 12(01): 80-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||