微RNA转录后修饰相关研究进展
收稿日期: 2019-07-25
网络出版日期: 2022-07-26
杨紫琳, 赵雨娉, 孙武, 陈熹, 姚玮艳 . 微RNA转录后修饰相关研究进展[J]. 内科理论与实践, 2021 , 16(01) : 67 -70 . DOI: 10.16138/j.1673-6087.2021.01.015
[1] | Saliminejad K, Khorram Khorshid HR, Sdeymani Fard S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods[J]. J Cell Physiol, 2019, 234(5): 5451-5465. |
[2] | Chen X, Xie D, Zhao Q, et al. MicroRNAs and complex diseases: from experimental results to computational models[J]. Brief Bioinform, 2019, 20(2): 515-539. |
[3] | Teufel M, Seidel H, Köchert K, et al. Biomarkers associated with response to regorafenib in patients with hepatocellular carcinoma[J]. Gastroenterology, 2019, 156(6): 1731-1741. |
[4] | Wong RR, Abd-Aziz N, Affendi S, et al. Role of micro-RNAs in antiviral responses to dengue infection[J]. J Biomed Sci, 2020, 27(1): 4. |
[5] | Titze-de-Almeida R, David C, Titze-de-Almeida SS. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market[J]. Pharm Res, 2017, 34(7): 1339-1363. |
[6] | Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours[J]. Br J Cancer, 2020, 122(11): 1630-1637. |
[7] | Beg MS, Brenner AJ, Sachdev J, et al. Phase Ⅰ study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors[J]. Invest New Drugs, 2017, 35(2): 180-188. |
[8] | Alarcón CR, Lee H, Goodarzi H, et al. N6-methyladenosine marks primary microRNAs for processing[J]. Nature, 2015, 519(7544): 482-485. |
[9] | Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis[J]. Science, 2005, 307(5711): 932-935. |
[10] | Li J, Yang Z, Yu B, et al. Methylation protects miRNAs and siRNAs from a 3’-end uridylation activity in Arabidopsis[J]. Curr Biol, 2005, 15(16): 1501-1507. |
[11] | Pandolfini L, Barbieri I, Bannister AJ, et al. METTL1 promotes let-7 microRNA processing via m7G methylation[J]. Mol Cell, 2019, 74(6): 1278-1290. |
[12] | Wang F, Johnson NR, Coruh C, et al. Genome-wide analysis of single non-templated nucleotides in plant endogenous siRNAs and miRNAs[J]. Nucleic Acids Res, 2016, 44(15): 7395-7405. |
[13] | Menezes MR, Balzeau J, Hagan JP. 3’ RNA uridylation in epitranscriptomics, gene regulation, and disease[J]. Front Mol Biosci, 2018, 5: 61. |
[14] | Thomas MP, Liu X, Whangbo J, et al. Apoptosis triggers specific, rapid, and global mRNA decay with 3’ uridylated intermediates degraded by DIS3L2[J]. Cell Rep, 2015, 11(7): 1079-1089. |
[15] | Wang X, Zhang S, Dou Y, et al. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3’ tailing of small RNAs in Arabidopsis[J]. PLoS Genet, 2015, 11(4): e1005091. |
[16] | Morgan M, Kabayama Y, Much C, et al. A programmed wave of uridylation-primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis[J]. Cell Res, 2019, 29(3): 221-232. |
[17] | Juzenas S, Venkatesh G, Hübenthal M, et al. A comprehensive, cell specific microRNA catalogue of human peripheral blood[J]. Nucleic Acids Res, 2017, 45(16): 9290-9301. |
[18] | Fei Q, Yu Y, Liu L, et al. Biogenesis of a 22-nt micro-RNA in Phaseoleae species by precursor-programmed uridylation[J]. Proc Natl Acad Sci U S A, 2018, 115(31): 8037-8042. |
[19] | Lin S, Gregory RI. Identification of small molecule inhibitors of Zcchc11 TUTase activity[J]. RNA Biol, 2015, 12(8): 792-800. |
[20] | Reimão-Pinto MM, Ignatova V, Burkard TR, et al. Uridylation of RNA hairpins by tailor confines the emergence of microRNAs in drosophila[J]. Mol Cell, 2015, 59(2): 203-216. |
[21] | Faehnle CR, Walleshauser J, Joshua-Tor L. Multi-domain utilization by TUT4 and TUT7 in control of let-7 biogenesis[J]. Nat Struct Mol Biol, 2017, 24(8): 658-665. |
[22] | Lovnicki J, Gan Y, Feng T, et al. LIN28B promotes the development of neuroendocrine prostate cancer[J]. J Clin Invest, 2020, 130(10): 5338-5348. |
[23] | Jones MR, Blahna MT, Kozlowski E, et al. Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival[J]. PLoS Genet, 2012, 8(11): e1003105. |
[24] | Jones MR, Quinton LJ, Blahna MT, et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression[J]. Nat Cell Biol, 2009, 11(9): 1157-1163. |
[25] | Lu S, Sun YH, Chiang VL. Adenylation of plant miRNAs[J]. Nucleic Acids Res, 2009, 37(6): 1878-1885. |
[26] | Katoh T, Hojo H, Suzuki T. Destabilization of micro-RNAs in human cells by 3’ deadenylation mediated by PARN and CUGBP1[J]. Nucleic Acids Res, 2015, 43(15): 7521-7534. |
[27] | Lee M, Choi Y, Kim K, et al. Adenylation of maternally inherited microRNAs by Wispy[J]. Mol Cell, 2014, 56(5): 696-707. |
[28] | Boele J, Persson H, Shin JW, et al. PAPD5-mediated 3’adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease[J]. Proc Natl Acad Sci U S A, 2014, 111(31): 11467-11472. |
[29] | Wani S, Kaul D. Cancer cells govern miR-2909 exosomal recruitment through its 3’-end post-transcriptional modifi-cation[J]. Cell Biochem Funct, 2018, 36(2): 106-111. |
[30] | Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J]. Autophagy, 2019, 15(8): 1419-1437. |
[31] | Jia R, Chai P, Wang S, et al. m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation[J]. Mol Cancer, 2019, 18(1): 161. |
[32] | Chang G, Leu JS, Ma L, et al. Methylation of RNA N6-methyladenosine in modulation of cytokine responses and tumorigenesis[J]. Cytokine, 2019, 118: 35-41. |
[33] | Li F, Yi Y, Miao Y, et al. N6-methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma[J]. Cancer Res, 2019, 79(22): 5785-5798. |
[34] | Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events[J]. Cell, 2015, 162(6): 1299-1308. |
[35] | Berulava T, Rahmann S, Rademacher K, et al. N6-adenosine methylation in MiRNAs[J]. PLoS One, 2015, 10(2): e0118438. |
[36] | Zhang J, Bai R, Li M, et al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression[J]. Nat Commun, 2019, 10(1): 1858. |
[37] | Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6‐methyladenosine‐dependent primary Micro-RNA processing[J]. Hepatology, 2017, 65(2): 529-543. |
[38] | Wang J, Ishfaq M, Xu L, et al. METTL3/m6 A/miRNA-873-5p attenuated oxidative stress and apoptosis in colistin-induced kidney injury by modulating keap1/nrf2 pathway[J]. Front Pharmacol, 2019, 10: 517. |
[39] | Yang W, Choi MH, Noh B, et al. De novo shoot regeneration controlled by HEN1 and TCP3/4 in arabidopsis[J]. Plant Cell Physiol, 2020, 61(9): 1600-1613. |
[40] | Wang J, Mei J, Ren G. Plant microRNAs: biogenesis, homeostasis, and degradation[J]. Front Plant Sci, 2019, 10: 360. |
[41] | Mickute M, Nainyte M, Vasiliauskaite L, et al. Animal Hen1 2’-O-methyltransferases as tools for 3’-terminal functionalization and labelling of single-stranded RNAs[J]. Nucleic Acids Res, 2018, 46(17): e104. |
[42] | Modepalli V, Fridrich A, Agron M, et al. The methyltransferase HEN1 is required in nematostella vectensis for microRNA and piRNA stability as well as larval metamorphosis[J]. PLoS Genet, 2018, 14(8): e1007590. |
[43] | Yu B, Chapman EJ, Yang Z, et al. Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in arabidopsis[J]. FEBS Lett, 2006, 580(13): 3117-3120. |
[44] | Hempfling AL, Lim SL, Adelson DL, et al. Expression patterns of HENMT1 and PIWIL1 in human testis: implications for transposon expression[J]. Reproduction, 2017, 154(4): 363-374. |
[45] | Iwasaki YW, Siomi MC, Siomi H. PIWI-interacting RNA: its biogenesis and functions[J]. Annu Rev Biochem, 2015, 84:405-433. |
[46] | Phay M, Kim HH, Yoo S. Analysis of piRNA-like small non-coding RNAs present in axons of adult sensory neurons[J]. Mol Neurobiol, 2018, 55(1): 483-494. |
/
〈 |
|
〉 |