内科理论与实践 ›› 2021, Vol. 16 ›› Issue (01): 67-70.doi: 10.16138/j.1673-6087.2021.01.015
• 综述 • 上一篇
收稿日期:
2019-07-25
出版日期:
2021-02-25
发布日期:
2022-07-26
通讯作者:
姚玮艳
E-mail:ywy11419@rjh.com.cn
Received:
2019-07-25
Online:
2021-02-25
Published:
2022-07-26
中图分类号:
杨紫琳, 赵雨娉, 孙武, 陈熹, 姚玮艳. 微RNA转录后修饰相关研究进展[J]. 内科理论与实践, 2021, 16(01): 67-70.
[1] |
Saliminejad K, Khorram Khorshid HR, Sdeymani Fard S, et al. An overview of microRNAs: biology, functions, therapeutics, and analysis methods[J]. J Cell Physiol, 2019, 234(5): 5451-5465.
doi: 10.1002/jcp.27486 pmid: 30471116 |
[2] |
Chen X, Xie D, Zhao Q, et al. MicroRNAs and complex diseases: from experimental results to computational models[J]. Brief Bioinform, 2019, 20(2): 515-539.
doi: 10.1093/bib/bbx130 URL |
[3] |
Teufel M, Seidel H, Köchert K, et al. Biomarkers associated with response to regorafenib in patients with hepatocellular carcinoma[J]. Gastroenterology, 2019, 156(6): 1731-1741.
doi: 10.1053/j.gastro.2019.01.261 URL |
[4] |
Wong RR, Abd-Aziz N, Affendi S, et al. Role of micro-RNAs in antiviral responses to dengue infection[J]. J Biomed Sci, 2020, 27(1): 4.
doi: 10.1186/s12929-019-0614-x pmid: 31898495 |
[5] |
Titze-de-Almeida R, David C, Titze-de-Almeida SS. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market[J]. Pharm Res, 2017, 34(7): 1339-1363.
doi: 10.1007/s11095-017-2134-2 URL |
[6] |
Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours[J]. Br J Cancer, 2020, 122(11): 1630-1637.
doi: 10.1038/s41416-020-0802-1 URL |
[7] |
Beg MS, Brenner AJ, Sachdev J, et al. Phase Ⅰ study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors[J]. Invest New Drugs, 2017, 35(2): 180-188.
doi: 10.1007/s10637-016-0407-y URL |
[8] |
Alarcón CR, Lee H, Goodarzi H, et al. N6-methyladenosine marks primary microRNAs for processing[J]. Nature, 2015, 519(7544): 482-485.
doi: 10.1038/nature14281 URL |
[9] |
Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis[J]. Science, 2005, 307(5711): 932-935.
doi: 10.1126/science.1107130 URL |
[10] |
Li J, Yang Z, Yu B, et al. Methylation protects miRNAs and siRNAs from a 3’-end uridylation activity in Arabidopsis[J]. Curr Biol, 2005, 15(16): 1501-1507.
doi: 10.1016/j.cub.2005.07.029 URL |
[11] |
Pandolfini L, Barbieri I, Bannister AJ, et al. METTL1 promotes let-7 microRNA processing via m7G methylation[J]. Mol Cell, 2019, 74(6): 1278-1290.
doi: S1097-2765(19)30269-2 pmid: 31031083 |
[12] |
Wang F, Johnson NR, Coruh C, et al. Genome-wide analysis of single non-templated nucleotides in plant endogenous siRNAs and miRNAs[J]. Nucleic Acids Res, 2016, 44(15): 7395-7405.
doi: 10.1093/nar/gkw457 URL |
[13] |
Menezes MR, Balzeau J, Hagan JP. 3’ RNA uridylation in epitranscriptomics, gene regulation, and disease[J]. Front Mol Biosci, 2018, 5: 61.
doi: 10.3389/fmolb.2018.00061 pmid: 30057901 |
[14] |
Thomas MP, Liu X, Whangbo J, et al. Apoptosis triggers specific, rapid, and global mRNA decay with 3’ uridylated intermediates degraded by DIS3L2[J]. Cell Rep, 2015, 11(7): 1079-1089.
doi: 10.1016/j.celrep.2015.04.026 URL |
[15] |
Wang X, Zhang S, Dou Y, et al. Synergistic and independent actions of multiple terminal nucleotidyl transferases in the 3’ tailing of small RNAs in Arabidopsis[J]. PLoS Genet, 2015, 11(4): e1005091.
doi: 10.1371/journal.pgen.1005091 URL |
[16] |
Morgan M, Kabayama Y, Much C, et al. A programmed wave of uridylation-primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis[J]. Cell Res, 2019, 29(3): 221-232.
doi: 10.1038/s41422-018-0128-1 URL |
[17] |
Juzenas S, Venkatesh G, Hübenthal M, et al. A comprehensive, cell specific microRNA catalogue of human peripheral blood[J]. Nucleic Acids Res, 2017, 45(16): 9290-9301.
doi: 10.1093/nar/gkx706 URL |
[18] |
Fei Q, Yu Y, Liu L, et al. Biogenesis of a 22-nt micro-RNA in Phaseoleae species by precursor-programmed uridylation[J]. Proc Natl Acad Sci U S A, 2018, 115(31): 8037-8042.
doi: 10.1073/pnas.1807403115 URL |
[19] |
Lin S, Gregory RI. Identification of small molecule inhibitors of Zcchc11 TUTase activity[J]. RNA Biol, 2015, 12(8): 792-800.
doi: 10.1080/15476286.2015.1058478 URL |
[20] |
Reimão-Pinto MM, Ignatova V, Burkard TR, et al. Uridylation of RNA hairpins by tailor confines the emergence of microRNAs in drosophila[J]. Mol Cell, 2015, 59(2): 203-216.
doi: 10.1016/j.molcel.2015.05.033 pmid: 26145176 |
[21] |
Faehnle CR, Walleshauser J, Joshua-Tor L. Multi-domain utilization by TUT4 and TUT7 in control of let-7 biogenesis[J]. Nat Struct Mol Biol, 2017, 24(8): 658-665.
doi: 10.1038/nsmb.3428 URL |
[22] |
Lovnicki J, Gan Y, Feng T, et al. LIN28B promotes the development of neuroendocrine prostate cancer[J]. J Clin Invest, 2020, 130(10): 5338-5348.
doi: 10.1172/JCI135373 pmid: 32634132 |
[23] |
Jones MR, Blahna MT, Kozlowski E, et al. Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival[J]. PLoS Genet, 2012, 8(11): e1003105.
doi: 10.1371/journal.pgen.1003105 URL |
[24] |
Jones MR, Quinton LJ, Blahna MT, et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression[J]. Nat Cell Biol, 2009, 11(9): 1157-1163.
doi: 10.1038/ncb1931 URL |
[25] |
Lu S, Sun YH, Chiang VL. Adenylation of plant miRNAs[J]. Nucleic Acids Res, 2009, 37(6): 1878-1885.
doi: 10.1093/nar/gkp031 URL |
[26] |
Katoh T, Hojo H, Suzuki T. Destabilization of micro-RNAs in human cells by 3’ deadenylation mediated by PARN and CUGBP1[J]. Nucleic Acids Res, 2015, 43(15): 7521-7534.
doi: 10.1093/nar/gkv669 URL |
[27] |
Lee M, Choi Y, Kim K, et al. Adenylation of maternally inherited microRNAs by Wispy[J]. Mol Cell, 2014, 56(5): 696-707.
doi: 10.1016/j.molcel.2014.10.011 URL |
[28] |
Boele J, Persson H, Shin JW, et al. PAPD5-mediated 3’adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease[J]. Proc Natl Acad Sci U S A, 2014, 111(31): 11467-11472.
doi: 10.1073/pnas.1317751111 URL |
[29] |
Wani S, Kaul D. Cancer cells govern miR-2909 exosomal recruitment through its 3’-end post-transcriptional modifi-cation[J]. Cell Biochem Funct, 2018, 36(2): 106-111.
doi: 10.1002/cbf.3323 URL |
[30] |
Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J]. Autophagy, 2019, 15(8): 1419-1437.
doi: 10.1080/15548627.2019.1586246 URL |
[31] |
Jia R, Chai P, Wang S, et al. m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation[J]. Mol Cancer, 2019, 18(1): 161.
doi: 10.1186/s12943-019-1088-x URL |
[32] |
Chang G, Leu JS, Ma L, et al. Methylation of RNA N6-methyladenosine in modulation of cytokine responses and tumorigenesis[J]. Cytokine, 2019, 118: 35-41.
doi: 10.1016/j.cyto.2018.06.018 URL |
[33] |
Li F, Yi Y, Miao Y, et al. N6-methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma[J]. Cancer Res, 2019, 79(22): 5785-5798.
doi: 10.1158/0008-5472.CAN-18-2868 URL |
[34] |
Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events[J]. Cell, 2015, 162(6): 1299-1308.
doi: 10.1016/j.cell.2015.08.011 URL |
[35] |
Berulava T, Rahmann S, Rademacher K, et al. N6-adenosine methylation in MiRNAs[J]. PLoS One, 2015, 10(2): e0118438.
doi: 10.1371/journal.pone.0118438 URL |
[36] |
Zhang J, Bai R, Li M, et al. Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression[J]. Nat Commun, 2019, 10(1): 1858.
doi: 10.1038/s41467-019-09712-x URL |
[37] |
Ma JZ, Yang F, Zhou CC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6‐methyladenosine‐dependent primary Micro-RNA processing[J]. Hepatology, 2017, 65(2): 529-543.
doi: 10.1002/hep.28885 URL |
[38] |
Wang J, Ishfaq M, Xu L, et al. METTL3/m6 A/miRNA-873-5p attenuated oxidative stress and apoptosis in colistin-induced kidney injury by modulating keap1/nrf2 pathway[J]. Front Pharmacol, 2019, 10: 517.
doi: 10.3389/fphar.2019.00517 URL |
[39] |
Yang W, Choi MH, Noh B, et al. De novo shoot regeneration controlled by HEN1 and TCP3/4 in arabidopsis[J]. Plant Cell Physiol, 2020, 61(9): 1600-1613.
doi: 10.1093/pcp/pcaa083 URL |
[40] |
Wang J, Mei J, Ren G. Plant microRNAs: biogenesis, homeostasis, and degradation[J]. Front Plant Sci, 2019, 10: 360.
doi: 10.3389/fpls.2019.00360 URL |
[41] |
Mickute M, Nainyte M, Vasiliauskaite L, et al. Animal Hen1 2’-O-methyltransferases as tools for 3’-terminal functionalization and labelling of single-stranded RNAs[J]. Nucleic Acids Res, 2018, 46(17): e104.
doi: 10.1093/nar/gky514 URL |
[42] |
Modepalli V, Fridrich A, Agron M, et al. The methyltransferase HEN1 is required in nematostella vectensis for microRNA and piRNA stability as well as larval metamorphosis[J]. PLoS Genet, 2018, 14(8): e1007590.
doi: 10.1371/journal.pgen.1007590 URL |
[43] |
Yu B, Chapman EJ, Yang Z, et al. Transgenically expressed viral RNA silencing suppressors interfere with microRNA methylation in arabidopsis[J]. FEBS Lett, 2006, 580(13): 3117-3120.
doi: 10.1016/j.febslet.2006.04.063 URL |
[44] |
Hempfling AL, Lim SL, Adelson DL, et al. Expression patterns of HENMT1 and PIWIL1 in human testis: implications for transposon expression[J]. Reproduction, 2017, 154(4): 363-374.
doi: 10.1530/REP-16-0586 pmid: 28676534 |
[45] |
Iwasaki YW, Siomi MC, Siomi H. PIWI-interacting RNA: its biogenesis and functions[J]. Annu Rev Biochem, 2015, 84:405-433.
doi: 10.1146/annurev-biochem-060614-034258 pmid: 25747396 |
[46] |
Phay M, Kim HH, Yoo S. Analysis of piRNA-like small non-coding RNAs present in axons of adult sensory neurons[J]. Mol Neurobiol, 2018, 55(1): 483-494.
doi: 10.1007/s12035-016-0340-2 URL |
[1] | 张璐璐, 武倩男, 霍如婕, 田新瑞. 微RNA-206与肺部疾病的研究进展[J]. 内科理论与实践, 2022, 17(05): 413-417. |
[2] | 李晓丽, 李为光, 钱爱华, 曹国良. 胰腺癌血清微RNA-486-3p的异常表达及对细胞增殖、凋亡的影响[J]. 内科理论与实践, 2021, 16(02): 121-125. |
[3] | 陈晨, 尹姗姗, 郭佳慧, 高丰厚. 微RNA-29家族降解PTEN mRNA促进非小细胞肺癌细胞存活与淋巴结侵袭[J]. 内科理论与实践, 2021, 16(01): 37-44. |
[4] | 杨莹洁, 赵虹,. 竞争性内源RNA在神经退行性疾病中的作用研究进展[J]. 内科理论与实践, 2019, 14(05): 325-327. |
[5] | 李为光, 李晓丽, 钱爱华, 姚玮艳,. 人胰腺癌组织中微RNA-134-5p的异常表达及其作用研究[J]. 内科理论与实践, 2019, 14(02): 121-126. |
[6] | 李为光, 姚玮艳, 汤玉茗, 黄佳, 钟捷,. 微RNA-28-5p在胰腺癌患者血清中的异常表达及其作用研究[J]. 内科理论与实践, 2017, 12(01): 59-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||