系统性红斑狼疮的遗传学研究进展
收稿日期: 2021-12-31
网络出版日期: 2022-08-09
史曼曼, 王语欣, 马毓华, 王朝晖 . 系统性红斑狼疮的遗传学研究进展[J]. 内科理论与实践, 2022 , 17(03) : 267 -272 . DOI: 10.16138/j.1673-6087.2022.03.019
[1] | Demirkaya E, Sahin S, Romano M. New horizons in the genetic etiology of systemic lupus erythematosus and lupus-like disease:monogenic lupus and beyond[J]. J Clin Med, 2020, 9(3): 712. |
[2] | Alperin JM, Ortiz-Fernández L, Sawalha AH. Monogenic lupus: a developing paradigm of disease[J]. Front Immunol, 2018, 9:2496. |
[3] | Nozal P, Garrido S, Martínez-Ara J, et al. Case report: lupus nephritis with autoantibodies to complement alternative pathway proteins and C3 gene mutation[J]. BMC Nephrol, 2015, 16: 40. |
[4] | Kim MJ, Lee H, Kim YH, et al. Eculizumab therapy on a patient with co-existent lupus nephritis and C3 mutation-related atypical haemolytic uremic syndrome: a case report[J]. BMC Nephrol, 2021, 22(1): 86. |
[5] | Tang W, Wang H, Tian R, et al. Bcl-3 inhibits lupus-like phenotypes in BL6/lpr mice[J]. Eur J Immunol, 2021, 51(1): 197-205. |
[6] | Hartl J, Serpas L, Wang Y, et al. Autoantibody-mediated impairment of DNASE1L3 activity in sporadic systemic lupus erythematosus[J]. J Exp Med, 2021, 218(5): e2020 1138. |
[7] | Kenny EF, Raupach B, Abu Abed U, et al. Dnase1-deficient mice spontaneously develop a systemic lupus erythematosus-like disease[J]. Eur J Immunol, 2019, 49(4): 590-599. |
[8] | Hosseini SA, Labilloy A. Genetics TREX 1 Mutations[M]// StatPearls. Treasure island. FL: StatPearls Publishing. 2021. |
[9] | Endo Y, Koga T, Otaki H, et al. Systemic lupus erythematosus overlapping dermatomyositis owing to a heterozygous TREX1 Asp130Asn missense mutation[J]. Clin Immunol, 2021, 227: 108732. |
[10] | Liu Y, Jesus AA, Marrero B, et al. Activated STING in a vascular and pulmonary syndrome[J]. N Engl J Med, 2014, 371(6): 507-518. |
[11] | Kara B, Ekinci Z, Sahin S, et al. Monogenic lupus due to spondyloenchondrodysplasia with spastic paraparesis and intracranial calcification: case-based review[J]. Rheumatol Int, 2020, 40(11):1903-1910. |
[12] | Ravenscroft JC, Suri M, Rice GI, et al. Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus[J]. Am J Med Genet A, 2011, 155A(1): 235-237. |
[13] | Belot A, Kasher PR, Trotter EW, et al. Protein kinase cδ deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation[J]. Arthritis Rheum, 2013, 65(8): 2161-2171. |
[14] | Miyamoto A, Nakayama K, Imaki H, et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase C delta[J]. Nature, 2002, 416(6883): 865-869. |
[15] | He Y, Gallman AE, Xie C, et al. P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance[J]. J Exp Med, 2022, 219(1):e20211004. |
[16] | Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus: seminars in immunopathology[J]. Semin Immunopathol, 2022, 44(1): 29-46. |
[17] | Nehar-Belaid D, Hong S, Marches R, et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell leve[J]. Nat Immunol, 2020, 21(9): 1094-1106. |
[18] | Kwon YC, Chun S, Kim K, et al. Update on the genetics of systemic lupus erythematosus: genome-wide association studies and beyond[J]. Cells, 2019, 8(10): 1180. |
[19] | Fernando MM, Stevens CR, Sabeti PC, et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families[J]. PLoS Genet, 2007, 3(11): e192. |
[20] | Zhang F, Wang YF, Zhang Y, et al. Independent replication on genome-wide association study signals identifies IRF3 as a novel locus for systemic lupus erythematosus[J]. Front Genet, 2020, 11: 600. |
[21] | Graham RR, Kyogoku C, Sigurdsson S, et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus[J]. Proc Natl Acad Sci U S A, 2007, 104(16): 6758-6763. |
[22] | Hambleton S, Salem S, Bustamante J, et al. IRF8 mutations and human dendritic-cell immunodeficiency[J]. N Engl J Med, 2011, 365(2): 127-138. |
[23] | Salloum R, Franek BS, Kariuki SN, et al. Genetic variation at the IRF7/PHRF1 locus is associated with autoantibody profile and serum interferon-alpha activity in lupus patients[J]. Arthritis Rheum, 2010, 62(2): 553-561. |
[24] | Deng Y, Zheng Y, Li D, et al. Expression characteristics of interferon-stimulated genes and possible regulatory mechanisms in lupus patients using transcriptomics analyses[J]. EBioMedicine, 2021, 70: 103477. |
[25] | Alunno A, Padjen I, Fanouriakis A, et al. Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent[J]. Cells, 2019, 8(8): 898. |
[26] | Robinson T, Kariuki SN, Franek BS, et al. Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-α and serologic autoimmunity in lupus patients[J]. J Immunol, 2011, 187(3): 1298-1303. |
[27] | Kaleta B, Mróz P, Górski A, et al. The preliminary association study of osteopontin 707 C/T polymorphism with systemic lupus erythematosus in a Polish population[J]. Postepy Dermatol Alergol, 2020, 37(2): 190-194. |
[28] | D’Alfonso S, Barizzone N, Giordano M, et al. Two single-nucleotide polymorphisms in the 5’ and 3’ ends of the osteopontin gene contribute to susceptibility to systemic lupus erythematosus[J]. Arthritis Rheum, 2005, 52(2): 539-547. |
[29] | Vigato-Ferreira IC, Toller-Kawahisa JE, Pancoto JA, et al. FcgammaRⅡa and FcgammaRⅢb polymorphisms and associations with clinical manifestations in systemic lupus erythematosus patients[J]. Autoimmunity, 2014, 47(7): 451-458. |
[30] | Dai M, Zhou Z, Wang X, et al. Association of FcγRⅢa-158V/F with systemic lupus erythematosus in a Chinese population[J]. Int J Rheum Dis, 2013, 16(6):685-691. |
[31] | Rizk MM, Elsayed ET, ElKeraie AF, et al. Association of tumor necrosis factor alpha-induced protein 3 interacting protein 1 (TNIP1) gene polymorphism (rs7708392) with lupus nephritis in Egyptian patients[J]. Biochem Genet, 2018, 56(5): 478-488. |
[32] | Musone SL, Taylor KE, Lu TT, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus[J]. Nat Genet, 2008, 40(9):1062-1064. |
[33] | Zhou J, Wu R, High AA, et al. A20-binding inhibitor of NF-κB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein β activation and protects from inflammatory disease[J]. Proc Natl Acad Sci U S A, 2011, 108(44): E998-E1006. |
[34] | Hövelmeyer N, Reissig S, Xuan NT, et al. A20 deficiency in B cells enhances B-cell proliferation and results in the development of autoantibodies[J]. Eur J Immunol, 2011, 41(3): 595-601. |
[35] | Khan SQ, Khan I, Gupta V. CD11b activity modulates pathogenesis of lupus nephritis[J]. Front Med (Lausanne), 2018, 5: 52. |
[36] | Dam EM, Habib T, Chen J, et al. The BANK1 SLE-risk variants are associated with alterations in peripheral B cell signaling and development in humans[J]. Clin Immunol, 2016, 173: 171-180. |
[37] | Lamagna C, Hu Y, DeFranco AL, et al. B cell-specific loss of Lyn kinase leads to autoimmunity[J]. J Immunol, 2014, 192(3): 919-928. |
[38] | Samuelson EM, Laird RM, Maue AC, et al. Blk haploinsufficiency impairs the development, but enhances the functional responses, of MZ B cells[J]. Immunol Cell Biol, 2012, 90(6): 620-629. |
[39] | Alonso-Perez E, Suarez-Gestal M, Calaza M, et al. Further evidence of subphenotype association with systemic lupus erythematosus susceptibility loci: a European cases only study[J]. PloS One, 2012, 7(9): e45356. |
[40] | Tizaoui K, Terrazzino S, Cargnin S, et al. The role of PTPN22 in the pathogenesis of autoimmune diseases: a comprehensive review[J]. Semin Arthritis Rheum, 2021, 51(3): 513-522. |
[41] | Yin X, Kim K, Suetsugu H, et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus[J]. Ann Rheum Dis, 2021, 80(5): 632-640. |
[42] | Chen L, Niu Q, Huang Z, et al. IKZF1 polymorphisms are associated with susceptibility, cytokine levels, and clinical features in systemic lupus erythematosus[J]. Medicine, 2020, 99(41): e22607. |
[43] | Bentham J, Morris DL, Graham DSC, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosuss[J]. Nat Genet, 2015, 47(12): 1457-1464. |
[44] | Sitrin J, Suto E, Wuster A, et al. The Ox40/Ox40 ligand pathway promotes pathogenic Th cell responses, plasmablast accumulation, and lupus nephritis in NZB/W F1 mice[J]. J Immunol, 2017, 199(4): 1238-1249. |
/
〈 |
|
〉 |