益生菌对心室重构的影响
收稿日期: 2021-11-12
网络出版日期: 2023-05-15
基金资助
国家自然科学基金项目(81970327);国家自然科学青年基金项目(82000368)
Effect of probiotics on ventricular remodeling
潘柔百, 宗枭, 陶蓉 . 益生菌对心室重构的影响[J]. 内科理论与实践, 2023 , 18(02) : 131 -134 . DOI: 10.16138/j.1673-6087.2023.02.015
[1] | Robertson RC, Manges AR, Finlay BB, et al. The human microbiome and child growth-first 1000 days and beyond[J]. Trends Microbiol, 2019, 27(2): 131-147. |
[2] | Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Mapping human microbiome drug metabolism by gut bacteria and their genes[J]. Nature, 2019, 570(7762): 462-467. |
[3] | Bessède E, Mégraud F. Microbiota and gastric cancer[J]. Semin Cancer Biol, 2022, 86 Pt 3: 11-17. |
[4] | Kastl AJ Jr, Terry NA, Wu GD, et al. The structure and function of the human small intestinal microbiota[J]. Cell Mol Gastroenterol Hepatol, 2020, 9(1): 33-45. |
[5] | Adak A, Khan MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019, 76(3): 473-493. |
[6] | Tilg H, Zmora N, Adolph TE, et al. The intestinal microbiota fuelling metabolic inflammation[J]. Nat Rev Immunol, 2020, 20(1): 40-54. |
[7] | Zhao J, Zhang X, Liu H, et al. Dietary protein and gut microbiota composition and function[J]. Curr Protein Pept Sci, 2019, 20(2): 145-154. |
[8] | Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism[J]. Rev Endocr Metab Disord, 2019, 20(4): 461-472. |
[9] | Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(1): 35-56. |
[10] | Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013. |
[11] | Vich Vila A, Collij V, Sanna S, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota[J]. Nat Commun, 2020, 11(1): 362. |
[12] | Boorsma EM, Ter Maaten JM, Damman K, et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment[J]. Nat Rev Cardiol, 2020, 17(10): 641-655. |
[13] | Aquila I, Shah AM. Ventricular remodeling in heart failure[M]. Encyclopedia of Cardiovascular Research and Medicine, Elsevier: Oxford, 2018: 683-689. |
[14] | Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy[J]. Nat Rev Cardiol, 2018, 15(7): 387-407. |
[15] | Wu QQ, Xiao Y, Yuan Y, et al. Mechanisms contributing to cardiac remodelling[J]. Clin Sci (Lond), 2017, 131(18): 2319-2345. |
[16] | Roger VL. Epidemiology of heart failure: a contemporary perspective[J]. Circ Res, 2021, 128(10): 1421-1434. |
[17] | Frantz S, Hundertmark MJ, Schulz-Menger J, et al. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies[J]. Eur Heart J, 2022, 43(27): 2549-2561. |
[18] | Sadeghzadeh J, Vakili A, Sameni HR, et al. The effect of oral consumption of probiotics in prevention of heart injury in a rat myocardial infarction model[J]. Iran Biomed J, 2017, 21(3):174-181. |
[19] | Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats[J]. FASEB J, 2012, 26(4): 1727-1735. |
[20] | Anaruma CP, Pereira RM, Anaruma CP, et al. Rock protein as cardiac hypertrophy modulator in obesity and physical exercise[J]. Life Sci, 2020, 254: 116955. |
[21] | Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat[J]. Circ Heart Fail, 2014, 7(3): 491-499. |
[22] | Qaradakhi T, Gadanec LK, McSweeney KR, et al. The anti-inflammatory effect of taurine on cardiovascular disease[J]. Nutrients, 2020, 12(9): 2847. |
[23] | Ettinger G, Burton JP, Gloor GB, et al. Lactobacillus rhamnosus GR-1 attenuates induction of hypertrophy in cardiomyocytes but not through secreted protein MSP-1(p75)[J]. PLoS One, 2017, 12(1): e0168622. |
[24] | Wang N, Song G, Yang Y, et al. Inactivated lactobacillus promotes protection against myocardial ischemia-reperfusion injury through NF-κB pathway[J]. Biosci Rep, 2017, 37(6): BSR20171025. |
[25] | Moludi J, Khedmatgozar H, Nachvak SM, et al. The effects of co-administration of probiotics and prebiotics on chronic inflammation, and depression symptoms in patients with coronary artery diseases: a randomized clinical trial[J]. Nutr Neurosci, 2022, 25(8): 1659-1668. |
[26] | Moludi J, Kafil HS, Qaisar SA, et al. Effect of probiotic supplementation along with calorie restriction on metabolic endotoxemia, and inflammation markers in coronary artery disease patients[J]. Nutr J, 2021, 20(1): 47. |
[27] | Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities[J]. Pharmacol Ther, 2018, 186: 73-87. |
[28] | Moludi J, Saiedi S, Ebrahimi B, et al. Probiotics supplementation on cardiac remodeling following myocardial infarction[J]. J Cardiovasc Transl Res, 2021, 14(2): 299-307. |
[29] | Li Z, Wu Z, Yan J, et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis[J]. Lab Invest, 2019, 99(3): 346-357. |
[30] | Yao ME, Liao PD, Zhao XJ, et al. Trimethylamine-N-oxide has prognostic value in coronary heart disease: a meta-analysis and dose-response analysis[J]. BMC Cardiovasc Disord, 2020, 20(1): 7. |
[31] | Malik M, Suboc TM, Tyagi S, et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease[J]. Circ Res, 2018, 123(9): 1091-1102. |
[32] | Tang TWH, Chen HC, Chen CY, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair[J]. Circulation, 2019, 139(5): 647-659. |
[33] | Gargiulo P, Marsico F, Renga F, et al. The metabolic syndrome in heart failure: insights to specific mechanisms[J]. Heart Fail Rev, 2020, 25(1): 1-7. |
[34] | Makrecka-Kuka M, Liepinsh E, Murray AJ, et al. Altered mitochondrial metabolism in the insulin-resistant heart[J]. Acta Physiol (Oxf), 2020, 228(3): e13430. |
[35] | Abel ED. Insulin signaling in the heart[J]. Am J Physiol Endocrinol Metab, 2021, 321(1): E130-E145. |
[36] | Tunapong W, Apaijai N, Yasom S, et al. Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats[J]. Eur J Nutr, 2018, 57(6): 2091-2104. |
[37] | Lai CH, Tsai CC, Kuo WW, et al. Multi-strain probiotics inhibit cardiac myopathies and autophagy to prevent heart injury in high-fat diet-fed rats[J]. Int J Med Sci, 2016, 13(4): 277-285. |
[38] | Chiang CJ, Tsai BC, Lu TL, et al. Diabetes-induced cardiomyopathy is ameliorated by heat-killed lactobacillus reuteri GMNL-263 in diabetic rats via the repression of the toll-like receptor 4 pathway[J]. Eur J Nutr, 2021, 60(6): 3211-3223. |
[39] | Sefidgari-Abrasi S, Roshangar L, Karimi P, et al. From the gut to the heart: L.plantarum and inulin administration as a novel approach to control cardiac apoptosis via 5-HT2B and TrkB receptors in diabetes[J]. Clin Nutr, 2021, 40(1): 190-201. |
[40] | Pugliese NR, Masi S, Taddei S. The renin-angiotensin-aldosterone system: a crossroad from arterial hypertension to heart failure[J]. Heart Fail Rev, 2020, 25(1): 31-42. |
[41] | Lin PP, Hsieh YM, Kuo WW, et al. Inhibition of cardiac hypertrophy by probiotic-fermented purple sweet potato yogurt in spontaneously hypertensive rat hearts[J]. Int J Mol Med, 2012, 30(6): 1365-1375. |
[42] | Gómez-Guzmán M, Toral M, Romero M, et al. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats[J]. Mol Nutr Food Res, 2015, 59(11): 2326-2336. |
[43] | Silva-Cutini MA, Almeida SA, Nascimento AM, et al. Long-term treatment with kefir probiotics ameliorates cardiac function in spontaneously hypertensive rats[J]. J Nutr Biochem, 2019, 66: 79-85. |
[44] | Robles-Vera I, Toral M, de la Visitación N, et al. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: role of short-chain fatty acids[J]. Mol Nutr Food Res, 2020, 64(6): e1900616. |
[45] | Xu J, Moore BN, Pluznick JL. Short-chain fatty acid receptors and blood pressure regulation: council on hypertension mid-career award for research excellence 2021[J]. Hypertension, 2022, 79(10): 2127-2137. |
[46] | Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease[J]. Circ Res, 2020, 127(4): 553-570. |
[47] | Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure[J]. Nat Rev Cardiol, 2019, 16(3): 137-154. |
[48] | George AK, Singh M, Pushpakumar S, et al. Dysbiotic 1-carbon metabolism in cardiac muscle remodeling[J]. J Cell Physiol, 2020, 235(3): 2590-2598. |
[49] | Morovic W, Budinoff CR. Epigenetics: a new frontier in probiotic research[J]. Trends Microbiol, 2021, 29(2): 117-126. |
[50] | Suez J, Zmora N, Segal E, et al. The pros, cons, and many unknowns of probiotics[J]. Nat Med, 2019, 25(5): 716-729. |
[51] | Yelin I, Flett KB, Merakou C, et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients[J]. Nat Med, 2019, 25(11): 1728-1732. |
[52] | Merenstein D, Pot B, Leyer G, et al. Emerging issues in probiotic safety: 2023 perspectives[J]. Gut Microbes, 2023, 15(1): 2185034. |
/
〈 |
|
〉 |