内科理论与实践 ›› 2023, Vol. 18 ›› Issue (02): 131-134.doi: 10.16138/j.1673-6087.2023.02.015
收稿日期:
2021-11-12
出版日期:
2023-04-25
发布日期:
2023-05-15
通讯作者:
陶蓉 E-mail: 基金资助:
PAN Roubai, ZONG Xiao, TAO Rong()
Received:
2021-11-12
Online:
2023-04-25
Published:
2023-05-15
中图分类号:
潘柔百, 宗枭, 陶蓉. 益生菌对心室重构的影响[J]. 内科理论与实践, 2023, 18(02): 131-134.
PAN Roubai, ZONG Xiao, TAO Rong. Effect of probiotics on ventricular remodeling[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(02): 131-134.
[51] |
Yelin I, Flett KB, Merakou C, et al. Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients[J]. Nat Med, 2019, 25(11): 1728-1732.
doi: 10.1038/s41591-019-0626-9 pmid: 31700189 |
[52] |
Merenstein D, Pot B, Leyer G, et al. Emerging issues in probiotic safety: 2023 perspectives[J]. Gut Microbes, 2023, 15(1): 2185034.
doi: 10.1080/19490976.2023.2185034 URL |
[1] |
Robertson RC, Manges AR, Finlay BB, et al. The human microbiome and child growth-first 1000 days and beyond[J]. Trends Microbiol, 2019, 27(2): 131-147.
doi: S0966-842X(18)30204-X pmid: 30529020 |
[2] |
Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Mapping human microbiome drug metabolism by gut bacteria and their genes[J]. Nature, 2019, 570(7762): 462-467.
doi: 10.1038/s41586-019-1291-3 |
[3] | Bessède E, Mégraud F. Microbiota and gastric cancer[J]. Semin Cancer Biol, 2022, 86 Pt 3: 11-17. |
[4] |
Kastl AJ Jr, Terry NA, Wu GD, et al. The structure and function of the human small intestinal microbiota[J]. Cell Mol Gastroenterol Hepatol, 2020, 9(1): 33-45.
doi: 10.1016/j.jcmgh.2019.07.006 URL |
[5] |
Adak A, Khan MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019, 76(3): 473-493.
doi: 10.1007/s00018-018-2943-4 pmid: 30317530 |
[6] |
Tilg H, Zmora N, Adolph TE, et al. The intestinal microbiota fuelling metabolic inflammation[J]. Nat Rev Immunol, 2020, 20(1): 40-54.
doi: 10.1038/s41577-019-0198-4 pmid: 31388093 |
[7] |
Zhao J, Zhang X, Liu H, et al. Dietary protein and gut microbiota composition and function[J]. Curr Protein Pept Sci, 2019, 20(2): 145-154.
doi: 10.2174/1389203719666180514145437 URL |
[8] |
Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism[J]. Rev Endocr Metab Disord, 2019, 20(4): 461-472.
doi: 10.1007/s11154-019-09512-0 |
[9] |
Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(1): 35-56.
doi: 10.1038/s41575-018-0061-2 pmid: 30262901 |
[10] |
Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4): 1877-2013.
doi: 10.1152/physrev.00018.2018 pmid: 31460832 |
[11] |
Vich Vila A, Collij V, Sanna S, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota[J]. Nat Commun, 2020, 11(1): 362.
doi: 10.1038/s41467-019-14177-z pmid: 31953381 |
[12] |
Boorsma EM, Ter Maaten JM, Damman K, et al. Congestion in heart failure: a contemporary look at physiology, diagnosis and treatment[J]. Nat Rev Cardiol, 2020, 17(10): 641-655.
doi: 10.1038/s41569-020-0379-7 pmid: 32415147 |
[13] | Aquila I, Shah AM. Ventricular remodeling in heart failure[M]. Encyclopedia of Cardiovascular Research and Medicine, Elsevier: Oxford, 2018: 683-689. |
[14] |
Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy[J]. Nat Rev Cardiol, 2018, 15(7): 387-407.
doi: 10.1038/s41569-018-0007-y pmid: 29674714 |
[15] |
Wu QQ, Xiao Y, Yuan Y, et al. Mechanisms contributing to cardiac remodelling[J]. Clin Sci (Lond), 2017, 131(18): 2319-2345.
doi: 10.1042/CS20171167 URL |
[16] |
Roger VL. Epidemiology of heart failure: a contemporary perspective[J]. Circ Res, 2021, 128(10): 1421-1434.
doi: 10.1161/CIRCRESAHA.121.318172 pmid: 33983838 |
[17] |
Frantz S, Hundertmark MJ, Schulz-Menger J, et al. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies[J]. Eur Heart J, 2022, 43(27): 2549-2561.
doi: 10.1093/eurheartj/ehac223 pmid: 35511857 |
[18] |
Sadeghzadeh J, Vakili A, Sameni HR, et al. The effect of oral consumption of probiotics in prevention of heart injury in a rat myocardial infarction model[J]. Iran Biomed J, 2017, 21(3):174-181.
doi: 10.18869/acadpub.ibj.21.3.174 pmid: 27874107 |
[19] |
Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats[J]. FASEB J, 2012, 26(4): 1727-1735.
doi: 10.1096/fj.11-197921 pmid: 22247331 |
[20] |
Anaruma CP, Pereira RM, Anaruma CP, et al. Rock protein as cardiac hypertrophy modulator in obesity and physical exercise[J]. Life Sci, 2020, 254: 116955.
doi: 10.1016/j.lfs.2019.116955 URL |
[21] |
Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat[J]. Circ Heart Fail, 2014, 7(3): 491-499.
doi: 10.1161/CIRCHEARTFAILURE.113.000978 pmid: 24625365 |
[22] |
Qaradakhi T, Gadanec LK, McSweeney KR, et al. The anti-inflammatory effect of taurine on cardiovascular disease[J]. Nutrients, 2020, 12(9): 2847.
doi: 10.3390/nu12092847 URL |
[23] |
Ettinger G, Burton JP, Gloor GB, et al. Lactobacillus rhamnosus GR-1 attenuates induction of hypertrophy in cardiomyocytes but not through secreted protein MSP-1(p75)[J]. PLoS One, 2017, 12(1): e0168622.
doi: 10.1371/journal.pone.0168622 URL |
[24] | Wang N, Song G, Yang Y, et al. Inactivated lactobacillus promotes protection against myocardial ischemia-reperfusion injury through NF-κB pathway[J]. Biosci Rep, 2017, 37(6): BSR20171025. |
[25] |
Moludi J, Khedmatgozar H, Nachvak SM, et al. The effects of co-administration of probiotics and prebiotics on chronic inflammation, and depression symptoms in patients with coronary artery diseases: a randomized clinical trial[J]. Nutr Neurosci, 2022, 25(8): 1659-1668.
doi: 10.1080/1028415X.2021.1889451 URL |
[26] |
Moludi J, Kafil HS, Qaisar SA, et al. Effect of probiotic supplementation along with calorie restriction on metabolic endotoxemia, and inflammation markers in coronary artery disease patients[J]. Nutr J, 2021, 20(1): 47.
doi: 10.1186/s12937-021-00703-7 pmid: 34074289 |
[27] |
Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities[J]. Pharmacol Ther, 2018, 186: 73-87.
doi: 10.1016/j.pharmthera.2018.01.001 URL |
[28] |
Moludi J, Saiedi S, Ebrahimi B, et al. Probiotics supplementation on cardiac remodeling following myocardial infarction[J]. J Cardiovasc Transl Res, 2021, 14(2): 299-307.
doi: 10.1007/s12265-020-10052-1 |
[29] |
Li Z, Wu Z, Yan J, et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis[J]. Lab Invest, 2019, 99(3): 346-357.
doi: 10.1038/s41374-018-0091-y pmid: 30068915 |
[30] |
Yao ME, Liao PD, Zhao XJ, et al. Trimethylamine-N-oxide has prognostic value in coronary heart disease: a meta-analysis and dose-response analysis[J]. BMC Cardiovasc Disord, 2020, 20(1): 7.
doi: 10.1186/s12872-019-01310-5 |
[31] |
Malik M, Suboc TM, Tyagi S, et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease[J]. Circ Res, 2018, 123(9): 1091-1102.
doi: 10.1161/CIRCRESAHA.118.313565 pmid: 30355158 |
[32] |
Tang TWH, Chen HC, Chen CY, et al. Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair[J]. Circulation, 2019, 139(5): 647-659.
doi: 10.1161/CIRCULATIONAHA.118.035235 pmid: 30586712 |
[33] |
Gargiulo P, Marsico F, Renga F, et al. The metabolic syndrome in heart failure: insights to specific mechanisms[J]. Heart Fail Rev, 2020, 25(1): 1-7.
doi: 10.1007/s10741-019-09838-6 pmid: 31414215 |
[34] | Makrecka-Kuka M, Liepinsh E, Murray AJ, et al. Altered mitochondrial metabolism in the insulin-resistant heart[J]. Acta Physiol (Oxf), 2020, 228(3): e13430. |
[35] |
Abel ED. Insulin signaling in the heart[J]. Am J Physiol Endocrinol Metab, 2021, 321(1): E130-E145.
doi: 10.1152/ajpendo.00158.2021 URL |
[36] |
Tunapong W, Apaijai N, Yasom S, et al. Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats[J]. Eur J Nutr, 2018, 57(6): 2091-2104.
doi: 10.1007/s00394-017-1482-3 pmid: 28608320 |
[37] |
Lai CH, Tsai CC, Kuo WW, et al. Multi-strain probiotics inhibit cardiac myopathies and autophagy to prevent heart injury in high-fat diet-fed rats[J]. Int J Med Sci, 2016, 13(4): 277-285.
doi: 10.7150/ijms.14769 URL |
[38] |
Chiang CJ, Tsai BC, Lu TL, et al. Diabetes-induced cardiomyopathy is ameliorated by heat-killed lactobacillus reuteri GMNL-263 in diabetic rats via the repression of the toll-like receptor 4 pathway[J]. Eur J Nutr, 2021, 60(6): 3211-3223.
doi: 10.1007/s00394-020-02474-z |
[39] |
Sefidgari-Abrasi S, Roshangar L, Karimi P, et al. From the gut to the heart: L.plantarum and inulin administration as a novel approach to control cardiac apoptosis via 5-HT2B and TrkB receptors in diabetes[J]. Clin Nutr, 2021, 40(1): 190-201.
doi: 10.1016/j.clnu.2020.05.004 pmid: 32446786 |
[40] |
Pugliese NR, Masi S, Taddei S. The renin-angiotensin-aldosterone system: a crossroad from arterial hypertension to heart failure[J]. Heart Fail Rev, 2020, 25(1): 31-42.
doi: 10.1007/s10741-019-09855-5 pmid: 31512149 |
[41] |
Lin PP, Hsieh YM, Kuo WW, et al. Inhibition of cardiac hypertrophy by probiotic-fermented purple sweet potato yogurt in spontaneously hypertensive rat hearts[J]. Int J Mol Med, 2012, 30(6): 1365-1375.
doi: 10.3892/ijmm.2012.1154 URL |
[42] |
Gómez-Guzmán M, Toral M, Romero M, et al. Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats[J]. Mol Nutr Food Res, 2015, 59(11): 2326-2336.
doi: 10.1002/mnfr.201500290 pmid: 26255877 |
[43] |
Silva-Cutini MA, Almeida SA, Nascimento AM, et al. Long-term treatment with kefir probiotics ameliorates cardiac function in spontaneously hypertensive rats[J]. J Nutr Biochem, 2019, 66: 79-85.
doi: S0955-2863(18)31061-1 pmid: 30776608 |
[44] | Robles-Vera I, Toral M, de la Visitación N, et al. Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: role of short-chain fatty acids[J]. Mol Nutr Food Res, 2020, 64(6): e1900616. |
[45] |
Xu J, Moore BN, Pluznick JL. Short-chain fatty acid receptors and blood pressure regulation: council on hypertension mid-career award for research excellence 2021[J]. Hypertension, 2022, 79(10): 2127-2137.
doi: 10.1161/HYPERTENSIONAHA.122.18558 URL |
[46] |
Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease[J]. Circ Res, 2020, 127(4): 553-570.
doi: 10.1161/CIRCRESAHA.120.316242 pmid: 32762536 |
[47] |
Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure[J]. Nat Rev Cardiol, 2019, 16(3): 137-154.
doi: 10.1038/s41569-018-0108-7 pmid: 30410105 |
[48] |
George AK, Singh M, Pushpakumar S, et al. Dysbiotic 1-carbon metabolism in cardiac muscle remodeling[J]. J Cell Physiol, 2020, 235(3): 2590-2598.
doi: 10.1002/jcp.29163 pmid: 31489638 |
[49] |
Morovic W, Budinoff CR. Epigenetics: a new frontier in probiotic research[J]. Trends Microbiol, 2021, 29(2): 117-126.
doi: 10.1016/j.tim.2020.04.008 pmid: 32409146 |
[50] |
Suez J, Zmora N, Segal E, et al. The pros, cons, and many unknowns of probiotics[J]. Nat Med, 2019, 25(5): 716-729.
doi: 10.1038/s41591-019-0439-x pmid: 31061539 |
[1] | 段中华, 王宇华, 郭斯敏. 牙周病在非酒精性脂肪性肝病中的作用及机制研究进展[J]. 内科理论与实践, 2023, 18(02): 107-110. |
[2] | 陈聪燕 综述, 王俊青, 陈拥军 审校. 肠道菌群与肝癌的发病机制[J]. 外科理论与实践, 2022, 27(03): 256-260. |
[3] | 许飞, 尹明月, 王伟, 董治亚, 陆文丽, 余熠, 王歆琼, 王俊祺, 肖园. 性早熟女童肠道菌群和抗生素耐药性的宏基因组分析[J]. 诊断学理论与实践, 2022, 21(01): 52-61. |
[4] | 高铭, 李娜, 刘煜. 脑-肠轴与2型糖尿病相关性的研究进展[J]. 内科理论与实践, 2021, 16(06): 418-421. |
[5] | 李林, 安静静, 王俊祺, 王歆琼, 董治亚. 16S rRNA第二代测序技术分析特发性身材矮小儿童肠道菌群构成的特征及相关发病机制研究[J]. 诊断学理论与实践, 2021, 20(02): 149-154. |
[6] | 李惠, 冯洁, 韩立中. 高通量测序技术分析无特定病原体级实验小鼠肠道的菌群组成[J]. 诊断学理论与实践, 2020, 19(1): 55-62. |
[7] | 安静静, 王俊祺, 肖园, 陆文丽, 李林, 王伟, 董治亚. 16S rRNA高通量测序分析肠道菌群对小于胎龄大鼠生长追赶的影响及其可能的机制[J]. 诊断学理论与实践, 2020, 19(04): 375-380. |
[8] | 张雪莹, 秦环龙. 肠道菌群作为结肠直肠癌生物标志物及其干预的临床意义[J]. 外科理论与实践, 2020, 25(02): 155-158. |
[9] | 陈瑶瑶, 顾爱华. 氧化三甲胺与心血管疾病关系的研究进展[J]. 诊断学理论与实践, 2019, 18(2): 237-240. |
[10] | 陆启帆, 蒋兆彦, 王启晗, 赵刚, 胡海. 牛磺熊去氧胆酸预防高脂饮食小鼠胆囊结石的研究[J]. 外科理论与实践, 2019, 24(06): 522-529. |
[11] | 陈超波, 蒋兆彦. 胆汁酸代谢与非酒精性脂肪性肝病[J]. 外科理论与实践, 2019, 24(04): 371-374. |
[12] | 汪婷婷, 郑乃盛, 袁向亮, 沈立松. 基于16S rRNA高通量测序技术分析小鼠实验性结肠炎肠道菌群结构特征[J]. 诊断学理论与实践, 2019, 18(03): 263-270. |
[13] | 蒋兆彦, 胡海, 韩天权, 张圣道. 肠道菌群改变与胆固醇结石病[J]. 外科理论与实践, 2019, 24(02): 93-95. |
[14] | 陆伦根, 胡江峰,. 肠道菌群与胆汁酸的研究进展[J]. 内科理论与实践, 2018, 13(06): 329-333. |
[15] | 陈施吾, 王刚,. 帕金森病与肠道菌群关系的研究进展[J]. 内科理论与实践, 2018, 13(05): 316-319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||