计算机辅助教学模式在全科医学住院医师血脂异常临床教学中的初步应用
Application of computer-aided teaching mode in clinical learning dyslipidemia for general practice residents
Received date: 2023-04-17
Online published: 2023-08-07
目的: 探讨基于计算机辅助教学模式在全科医学住院医师血脂异常临床教学中的应用。方法: 选取2019 年7 月至2022年8月期间在本院参加住院医师规范化培训的全科医学住院医师42名作为研究对象,采用随机数字表法分为对照组和研究组,对照组采用传统教学法授课;研究组采用基于计算机辅助教学的模式授课。培训前后,比较2组基础理论及临床实际案例分析成绩,通过问卷来调查住院医师对血脂异常掌握情况、主观学习态度及计算机辅助教学模式在全科医学中应用的认可度。结果: 研究组基础理论知识[(40.52±2.93)分比(37.86±5.20)分]、临床实际案例分析成绩[(39.95±2.84)分比(36.24±3.94)分]及培训前后考核成绩提高 [基础理论知识差值(11.67±4.37)分比(7.86±5.57)分]、临床实际案例应用分析考核成绩前后差值[(13.00±3.69)分比(8.14±4.95)分]均高于对照组(均P<0.05);研究组血脂异常教学知识点掌握情况[(35.48±1.33)比(29.29±1.85)分]、主观学习态度情况[(25.81±1.25)分比(21.05±0.97)分]、计算机辅助教学在全科医学中应用的认可度得分[(27.95±0.80)分比(18.33±1.15)分]明显优于对照组(均P<0.05)。结论: 基于计算机辅助的教学方法在全科医学住院医师血脂异常的临床教学中优于传统教学法,更能提高住院医师基础理论知识的掌握程度和实践应用的临床综合能力,并获得全科医学住院医师的认可。
木卡大斯·热合曼, 叶晨静, 周淑颖, 张晨莉, 童建菁, 张弦 . 计算机辅助教学模式在全科医学住院医师血脂异常临床教学中的初步应用[J]. 内科理论与实践, 2023 , 18(03) : 183 -187 . DOI: 10.16138/j.1673-6087.2023.03.009
Objective To explore the teaching method based on computer-aided teaching mode in the clinical learning dyslipidemia for general practice residents. Methods A total of 42 residents who participated in standardized training for general practice residents at our hospital from July in 2019 to August in 2022 were selected as the research subjects. They were randomly divided into a reference group and a research group. The reference group learned dyslipidemia through traditional teaching methods while the research group learned it through a computer-aided teaching mode. Before and after the course, the basic theoretical knowledge assessment and clinical case application analysis assessment in two groups were performed and the scores were compared. In addition, a questionnaire survey was conducted to evaluate how well the residents learned the key points of dyslipidemia, their subjective learning attitude, and their acceptance of application of computer-aided teaching mode in general practice. Results In research group, the basic theoretical knowledge(40.52±2.93 vs 37.86±5.20), clinical practical case analysis scores(39.95±2.84 vs 36.24±3.94), and score increase of basic theoretical knowledge and clinical practical case analysis after learning (11.67±4.37 vs 7.86±5.57; 13.00±3.69 vs 8.14±4.95) were higher than those in reference group and showed statistical differences(P<0.05). Compared to reference group, the scores in research group were significantly higher in terms of learning key point of dyslipidemia (35.48±1.33 vs 29.29±1.85), the subjective learning attitude(25.81±1.25 vs 21.05±0.97), and acceptance of computer-aided teaching mode (27.95±0.80 vs 18.33±1.15) in general practice (P<0.05). Conclusions The teaching method based on computer-aided teaching mode is superior to traditional teaching methods in clinical learning of dyslipidemia for general practitioners. Besides,it can also improve basic theoretical knowledge learning and clinical comprehensive ability in practical application, and it’s easy to be acceptable by general practitioners.
[1] | 顾景范. 《中国居民营养与慢性病状况报告(2015)》解读[J]. 营养学报, 2016, 38(6): 525-529. |
[2] | Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins[J]. Lancet, 2005, 366(9493): 1267-1278. |
[3] | 国家卫生和计划生育委员会. 2017中国卫生和计划生育统计年鉴[M]. 北京: 中国协和医科大学出版社, 2017: 40. |
[4] | 李献青, 张玲. 公共健康视域下全科医生健康管理与指导能力的培养[J]. 保健医学研究与实践, 2020, 17(4): 77-81. |
[5] | 武宁, 程明羡, 闫丽娜, 等. 中国全科医生培养发展报告(2018)[J]. 中国全科医学, 2018, 21(10): 1135-1142. |
[6] | 赵欣欣, 李觉, 吴恒璟. 社区全科医生科研培养路径的实践与思考[J]. 中华全科医学, 2019, 17(12): 1979-1981. |
[7] | 陈国湘, 李俊, 韦华, 等. 基于人工智能技术的全科医生培养模式探索[J]. 中华全科医学, 2021, 19(2): 167-170. |
[8] | 张冉冉, 蒲利红, 张文, 等. 人工智能在医学影像教育中的应用现状和前景[J]. 现代预防医学, 2019, 46(24): 4527-4529. |
[9] | 刁渴珂, 单岩, 黄艺嘉, 等. 人工智能在医学教育应用中的伦理学问题分析[J]. 医学教育管理, 2023, 9(1): 122-126. |
[10] | 中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 血脂异常基层诊疗指南(2019年)[J]. 中华全科医师杂志, 2019, 18(5): 406-416. |
[11] | 任文, 李婷, 刘颖, 等. 基于四象限法则的全科住院医师规范化培训专科轮转病种数据库研究[J]. 中国毕业后医学教育, 2022, 6(5): 505-508. |
[12] | 王潜, 左君丽, 顾政平, 等. 社区在职全科医生继续医学教育现况[J]. 解放军医院管理杂志, 2019, 26(4): 381-385. |
[13] | 杨慧敏, 尹德卢, 辛倩倩, 等. 我国基层全科医生队伍现状和继续医学教育内容需求分析[J]. 中华全科医学, 2018, 16(10): 1591-1594. |
[14] | 王永晨. 全科医生专长化: 我国全科医生继续教育的新理念[J]. 中华医学教育探索杂志, 2018, 17(5): 433-438. |
[15] | Tam YH, Leung JYY, Ni MY, et al. Training sufficient and adequate general practitioners for universal health coverage in China[J]. BMJ, 2018, 362: k3128. |
[16] | 孙岳川, 高键东, 吴及. 临床医学人工智能:典型应用与挑战[J]. 中国卒中杂志, 2021, 16(7): 643-648. |
[17] | Arshad S, McCombe G, Carberry C, et al. What factors influence medical students to enter a career in general practice?[J]. Ir J Med Sci, 2021, 190(2): 657-665. |
[18] | Zims H, Karay Y, Neugebauer P, et al. Fifteen years of the cologne medical model study course: has the expectation of increasing student interest in general practice specialization been fulfilled?[EB/J]. GMS J Med Educ, 2019. https://www.egms.de/static/pdf/journals/zma/2019-36/zma001266.pdf. |
[19] | 邹雨桐, 马超超, 尹逸丛, 等. 基于能力胜任的医学科学研究方法的教育现状及思考[J]. 标记免疫分析与临床, 2021, 28(1): 147-151. |
[20] | Beam AL, Kohane IS. Translating artificial intelligence into clinical care[J]. JAMA, 2016, 316(22): 2368-2369. |
[21] | 钟敏, 胡燕, 程茜, 等. 人工智能在医学教育中的应用现状与思考[J]. 中国继续医学教育, 2020, 12 (18): 79-81. |
/
〈 |
|
〉 |