综述

糖尿病肾病发病机制研究进展

展开
  • 1.无锡市中医医院中医经典科,江苏 无锡 214071
    2.上海交通大学医学院附属瑞金医院肾脏内科,上海 200025

收稿日期: 2023-01-13

  网络出版日期: 2023-08-07

基金资助

无锡市太湖人才计划项目;无锡市中医药科技项目(ZYKJ201913);无锡市首届”双百”中青年医疗卫生拔尖人才资助计划;江苏省中医科技发展计划项目(MS2022058)

Research progress on pathogenesis of diabetic nephropathy

Expand

Received date: 2023-01-13

  Online published: 2023-08-07

本文引用格式

毕礼明, 王朝晖 . 糖尿病肾病发病机制研究进展[J]. 内科理论与实践, 2023 , 18(03) : 201 -205 . DOI: 10.16138/j.1673-6087.2023.03.014

参考文献

[1] Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22 Suppl 1: 3-15.
[2] Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China[J]. N Engl J Med, 2016, 375(9): 905-906.
[3] Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22 Suppl 1: 3-15.
[4] Kopel J, Pena-Hernandez C, Nugent K. Evolving spectrum of diabetic nephropathy[J]. World J Diabetes, 2019, 10(5): 269-279.
[5] Xiong Y, Zhou L. The signaling of cellular senescence in diabetic nephropathy[J]. Oxid Med Cell Longev, 2019, 2019:7495629.
[6] Sugahara M, Pak WLW, Tanaka T, et al. Update on diagnosis, pathophysiology, and management of diabetic kidney disease[J]. Nephrology (Carlton), 2021, 26(6): 491-500.
[7] Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative stress: pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction[J]. Bull Exp Biol Med, 2021, 171(2): 179-189.
[8] Thallas-Bonke V, Thorpe SR, Coughlan MT, et al. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway[J]. Diabetes, 2008, 57(2):460-469.
[9] Pavlov TS, Palygin O, Isaeva E, et al. NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease[J]. FASEB J, 2020, 34(10): 13396-13408.
[10] Duni A, Liakopoulos V, Roumeliotis S, et al. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne’s thread[J]. Int J Mol Sci, 2019, 20(15): 3711.
[11] Luc K, Schramm-Luc A, Guzik TJ, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes[J]. J Physiol Pharmacol, 2019, 70(6): 809-824.
[12] Yang J, Liu Z. Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy[J]. Front Endocrinol (Lausanne), 2022, 13: 816400.
[13] Winiarska A, Knysak M, Nabrdalik K, et al. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists[J]. Int J Mol Sci, 2021, 22(19): 10822.
[14] Wang L, Wang HL, Liu TT, et al. TGF-beta as a master regulator of diabetic nephropathy[J]. Int J Mol Sci, 2021, 22(15): 7881.
[15] Hernandez LF, Eguchi N, Whaley D, et al. Anti-oxidative therapy in diabetic nephropathy[J]. Front Biosci (Schol Ed), 2022, 14(2): 14.
[16] Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: basic and clinical aspects—a general perspective[J]. Endocrinol Diabetes Nutr (Engl Ed), 2022, 69(1): 52-62.
[17] Lin YC, Chang YH, Yang SY, et al. Update of pathophysiology and management of diabetic kidney disease[J]. J Formos Med Assoc, 2018, 117(8): 662-675.
[18] Patel DM, Bose M, Cooper ME. Glucose and blood pressure-dependent pathways—the progression of diabetic kidney disease[J]. Int J Mol Sci, 2020, 21(6): 2218.
[19] Tung CW, Hsu YC, Shih YH, et al. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy[J]. Nephrology (Carlton), 2018, 23 Suppl 4: 32-37.
[20] Nomura H, Kuruppu S, Rajapakse NW. Stimulation of angiotensin converting enzyme 2: a novel treatment strategy for diabetic nephropathy[J]. Front Physiol, 2022, 12: 813012.
[21] Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension[J]. Steroids, 2020, 163: 108701.
[22] Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins Ⅰ and Ⅱ in anesthetized rats[J]. Hypertension, 2002, 39(1): 129-134.
[23] Singh R, Singh AK, Alavi N, et al. Mechanism of increased angiotensin Ⅱ levels in glomerular mesangial cells cultured in high glucose[J]. J Am Soc Nephrol, 2003, 14(4): 873-880.
[24] Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018[J]. Am J Kidney Dis, 2018, 71(6): 884-895.
[25] Jung SW, Moon JY. The role of inflammation in diabetic kidney disease[J]. Korean J Intern Med, 2021, 36(4): 753-766.
[26] Pérez-Morales RE, Del Pino MD, Valdivielso JM, et al. Inflammation in diabetic kidney disease[J]. Nephron, 2019, 143(1): 12-16.
[27] Pichler R, Afkarian M, Dieter BP, et al. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets[J]. Am J Physiol Renal Physiol, 2017, 312(4): F716-F731.
[28] Suzuki D, Miyazaki M, Naka R, et al. In situ hybridization of interleukin 6 in diabetic nephropathy[J]. Diabetes, 1995, 44(10): 1233-1238.
[29] Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806.
[30] Pickup JC, Chusney GD, Thomas SM, et al. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes[J]. Life Sci, 2000, 67(3): 291-300.
[31] Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806.
[32] Liu Y. Cellular and molecular mechanisms of renal fibrosis[J]. Nat Rev Nephrol, 2011, 7(12): 684-696.
[33] Tanase DM, Gosav EM, Anton MI, et al. Oxidative stress and NRF2/KEAP1/ARE pathway in diabetic kidney di-sease (DKD): new perspectives[J]. Biomolecules, 2022, 12(9): 1227.
[34] Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy[J]. Nat Rev Nephrol, 2011, 7(6): 327-340.
[35] Tan SM, de Haan JB. Combating oxidative stress in diabetic complications with Nrf 2 activators: how much is too much?[J]. Redox Rep, 2014, 19(3):107-117.
[36] Hofni A, Ali FEM, Ibrahim ARN, et al. Renoprotective effect of thymoquinone against streptozotocin-induced diabetic nephropathy: role of NOX2 and Nrf2 signals[J]. Curr Mol Pharmacol, 2023, 16(8): 905-914.
[37] Menne J, Park JK, Boehne M, et al. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice[J]. Diabetes, 2004, 53(8): 2101-2109.
[38] Cheng YS, Chao J, Chen C, et al. The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy[J]. J Pharm Pharmacol, 2019, 71(3): 338-347.
[39] Ohshiro Y, Ma RC, Yasuda Y, et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expres-sion, and renal dysfunction in protein kinase Cβ-null mice[J]. Diabetes, 2006, 55(11): 3112-3120.
[40] Xu J, Wang Y, Wang Z, et al. Fucoidan mitigated diabetic nephropathy through the downregulation of PKC and modulation of NF-κB signaling pathway: in vitro and in vivo investigations[J]. Phytother Res, 2021, 35(4): 2133-2144.
[41] Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, et al. Cellular death, reactive oxygen species (ROS) and diabetic complications[J]. Cell Death Dis, 2018, 9(2):119.
[42] Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal, 2014, 20(7):1126-1167.
[43] Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?[J]. Oxid Med Cell Longev, 2016, 2016: 5698931.
[44] Winiarska A, Knysak M, Nabrdalik K, et al. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists[J]. Int J Mol Sci, 2021, 22(19): 10822.
[45] Cheng D, Liang R, Huang B, et al. Tumor necrosis factor-α blockade ameliorates diabetic nephropathy in rats[J]. Clin Kidney J, 2019, 14(1): 301-308.
[46] 徐欢, 王伟铭. 延缓糖尿病肾病进展的措施[J]. 上海医学, 2020, 43(9): 575-580.
文章导航

/