糖尿病肾病发病机制研究进展
收稿日期: 2023-01-13
网络出版日期: 2023-08-07
基金资助
无锡市太湖人才计划项目;无锡市中医药科技项目(ZYKJ201913);无锡市首届”双百”中青年医疗卫生拔尖人才资助计划;江苏省中医科技发展计划项目(MS2022058)
Research progress on pathogenesis of diabetic nephropathy
毕礼明, 王朝晖 . 糖尿病肾病发病机制研究进展[J]. 内科理论与实践, 2023 , 18(03) : 201 -205 . DOI: 10.16138/j.1673-6087.2023.03.014
[1] | Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22 Suppl 1: 3-15. |
[2] | Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China[J]. N Engl J Med, 2016, 375(9): 905-906. |
[3] | Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22 Suppl 1: 3-15. |
[4] | Kopel J, Pena-Hernandez C, Nugent K. Evolving spectrum of diabetic nephropathy[J]. World J Diabetes, 2019, 10(5): 269-279. |
[5] | Xiong Y, Zhou L. The signaling of cellular senescence in diabetic nephropathy[J]. Oxid Med Cell Longev, 2019, 2019:7495629. |
[6] | Sugahara M, Pak WLW, Tanaka T, et al. Update on diagnosis, pathophysiology, and management of diabetic kidney disease[J]. Nephrology (Carlton), 2021, 26(6): 491-500. |
[7] | Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative stress: pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction[J]. Bull Exp Biol Med, 2021, 171(2): 179-189. |
[8] | Thallas-Bonke V, Thorpe SR, Coughlan MT, et al. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway[J]. Diabetes, 2008, 57(2):460-469. |
[9] | Pavlov TS, Palygin O, Isaeva E, et al. NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease[J]. FASEB J, 2020, 34(10): 13396-13408. |
[10] | Duni A, Liakopoulos V, Roumeliotis S, et al. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne’s thread[J]. Int J Mol Sci, 2019, 20(15): 3711. |
[11] | Luc K, Schramm-Luc A, Guzik TJ, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes[J]. J Physiol Pharmacol, 2019, 70(6): 809-824. |
[12] | Yang J, Liu Z. Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy[J]. Front Endocrinol (Lausanne), 2022, 13: 816400. |
[13] | Winiarska A, Knysak M, Nabrdalik K, et al. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists[J]. Int J Mol Sci, 2021, 22(19): 10822. |
[14] | Wang L, Wang HL, Liu TT, et al. TGF-beta as a master regulator of diabetic nephropathy[J]. Int J Mol Sci, 2021, 22(15): 7881. |
[15] | Hernandez LF, Eguchi N, Whaley D, et al. Anti-oxidative therapy in diabetic nephropathy[J]. Front Biosci (Schol Ed), 2022, 14(2): 14. |
[16] | Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: basic and clinical aspects—a general perspective[J]. Endocrinol Diabetes Nutr (Engl Ed), 2022, 69(1): 52-62. |
[17] | Lin YC, Chang YH, Yang SY, et al. Update of pathophysiology and management of diabetic kidney disease[J]. J Formos Med Assoc, 2018, 117(8): 662-675. |
[18] | Patel DM, Bose M, Cooper ME. Glucose and blood pressure-dependent pathways—the progression of diabetic kidney disease[J]. Int J Mol Sci, 2020, 21(6): 2218. |
[19] | Tung CW, Hsu YC, Shih YH, et al. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy[J]. Nephrology (Carlton), 2018, 23 Suppl 4: 32-37. |
[20] | Nomura H, Kuruppu S, Rajapakse NW. Stimulation of angiotensin converting enzyme 2: a novel treatment strategy for diabetic nephropathy[J]. Front Physiol, 2022, 12: 813012. |
[21] | Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension[J]. Steroids, 2020, 163: 108701. |
[22] | Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins Ⅰ and Ⅱ in anesthetized rats[J]. Hypertension, 2002, 39(1): 129-134. |
[23] | Singh R, Singh AK, Alavi N, et al. Mechanism of increased angiotensin Ⅱ levels in glomerular mesangial cells cultured in high glucose[J]. J Am Soc Nephrol, 2003, 14(4): 873-880. |
[24] | Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018[J]. Am J Kidney Dis, 2018, 71(6): 884-895. |
[25] | Jung SW, Moon JY. The role of inflammation in diabetic kidney disease[J]. Korean J Intern Med, 2021, 36(4): 753-766. |
[26] | Pérez-Morales RE, Del Pino MD, Valdivielso JM, et al. Inflammation in diabetic kidney disease[J]. Nephron, 2019, 143(1): 12-16. |
[27] | Pichler R, Afkarian M, Dieter BP, et al. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets[J]. Am J Physiol Renal Physiol, 2017, 312(4): F716-F731. |
[28] | Suzuki D, Miyazaki M, Naka R, et al. In situ hybridization of interleukin 6 in diabetic nephropathy[J]. Diabetes, 1995, 44(10): 1233-1238. |
[29] | Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806. |
[30] | Pickup JC, Chusney GD, Thomas SM, et al. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes[J]. Life Sci, 2000, 67(3): 291-300. |
[31] | Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806. |
[32] | Liu Y. Cellular and molecular mechanisms of renal fibrosis[J]. Nat Rev Nephrol, 2011, 7(12): 684-696. |
[33] | Tanase DM, Gosav EM, Anton MI, et al. Oxidative stress and NRF2/KEAP1/ARE pathway in diabetic kidney di-sease (DKD): new perspectives[J]. Biomolecules, 2022, 12(9): 1227. |
[34] | Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy[J]. Nat Rev Nephrol, 2011, 7(6): 327-340. |
[35] | Tan SM, de Haan JB. Combating oxidative stress in diabetic complications with Nrf 2 activators: how much is too much?[J]. Redox Rep, 2014, 19(3):107-117. |
[36] | Hofni A, Ali FEM, Ibrahim ARN, et al. Renoprotective effect of thymoquinone against streptozotocin-induced diabetic nephropathy: role of NOX2 and Nrf2 signals[J]. Curr Mol Pharmacol, 2023, 16(8): 905-914. |
[37] | Menne J, Park JK, Boehne M, et al. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice[J]. Diabetes, 2004, 53(8): 2101-2109. |
[38] | Cheng YS, Chao J, Chen C, et al. The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy[J]. J Pharm Pharmacol, 2019, 71(3): 338-347. |
[39] | Ohshiro Y, Ma RC, Yasuda Y, et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expres-sion, and renal dysfunction in protein kinase Cβ-null mice[J]. Diabetes, 2006, 55(11): 3112-3120. |
[40] | Xu J, Wang Y, Wang Z, et al. Fucoidan mitigated diabetic nephropathy through the downregulation of PKC and modulation of NF-κB signaling pathway: in vitro and in vivo investigations[J]. Phytother Res, 2021, 35(4): 2133-2144. |
[41] | Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, et al. Cellular death, reactive oxygen species (ROS) and diabetic complications[J]. Cell Death Dis, 2018, 9(2):119. |
[42] | Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal, 2014, 20(7):1126-1167. |
[43] | Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?[J]. Oxid Med Cell Longev, 2016, 2016: 5698931. |
[44] | Winiarska A, Knysak M, Nabrdalik K, et al. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists[J]. Int J Mol Sci, 2021, 22(19): 10822. |
[45] | Cheng D, Liang R, Huang B, et al. Tumor necrosis factor-α blockade ameliorates diabetic nephropathy in rats[J]. Clin Kidney J, 2019, 14(1): 301-308. |
[46] | 徐欢, 王伟铭. 延缓糖尿病肾病进展的措施[J]. 上海医学, 2020, 43(9): 575-580. |
/
〈 |
|
〉 |