内科理论与实践 ›› 2023, Vol. 18 ›› Issue (03): 201-205.doi: 10.16138/j.1673-6087.2023.03.014
收稿日期:
2023-01-13
出版日期:
2023-06-30
发布日期:
2023-08-07
通讯作者:
王朝晖 E-mail: 基金资助:
Received:
2023-01-13
Online:
2023-06-30
Published:
2023-08-07
中图分类号:
毕礼明, 王朝晖. 糖尿病肾病发病机制研究进展[J]. 内科理论与实践, 2023, 18(03): 201-205.
BI Liming, WANG Zhaohui. Research progress on pathogenesis of diabetic nephropathy[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(03): 201-205.
[1] |
Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22 Suppl 1: 3-15.
doi: 10.1111/dom.14007 pmid: 32267079 |
[2] |
Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China[J]. N Engl J Med, 2016, 375(9): 905-906.
doi: 10.1056/NEJMc1602469 URL |
[3] |
Selby NM, Taal MW. An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines[J]. Diabetes Obes Metab, 2020, 22 Suppl 1: 3-15.
doi: 10.1111/dom.14007 pmid: 32267079 |
[4] |
Kopel J, Pena-Hernandez C, Nugent K. Evolving spectrum of diabetic nephropathy[J]. World J Diabetes, 2019, 10(5): 269-279.
doi: 10.4239/wjd.v10.i5.269 pmid: 31139314 |
[5] | Xiong Y, Zhou L. The signaling of cellular senescence in diabetic nephropathy[J]. Oxid Med Cell Longev, 2019, 2019:7495629. |
[6] |
Sugahara M, Pak WLW, Tanaka T, et al. Update on diagnosis, pathophysiology, and management of diabetic kidney disease[J]. Nephrology (Carlton), 2021, 26(6): 491-500.
doi: 10.1111/nep.v26.6 URL |
[7] |
Darenskaya MA, Kolesnikova LI, Kolesnikov SI. Oxidative stress: pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction[J]. Bull Exp Biol Med, 2021, 171(2): 179-189.
doi: 10.1007/s10517-021-05191-7 |
[8] |
Thallas-Bonke V, Thorpe SR, Coughlan MT, et al. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway[J]. Diabetes, 2008, 57(2):460-469.
doi: 10.2337/db07-1119 pmid: 17959934 |
[9] |
Pavlov TS, Palygin O, Isaeva E, et al. NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease[J]. FASEB J, 2020, 34(10): 13396-13408.
doi: 10.1096/fsb2.v34.10 URL |
[10] |
Duni A, Liakopoulos V, Roumeliotis S, et al. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne’s thread[J]. Int J Mol Sci, 2019, 20(15): 3711.
doi: 10.3390/ijms20153711 URL |
[11] |
Luc K, Schramm-Luc A, Guzik TJ, et al. Oxidative stress and inflammatory markers in prediabetes and diabetes[J]. J Physiol Pharmacol, 2019, 70(6): 809-824.
doi: 10.26402/jpp.2019.6.01 |
[12] |
Yang J, Liu Z. Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy[J]. Front Endocrinol (Lausanne), 2022, 13: 816400.
doi: 10.3389/fendo.2022.816400 URL |
[13] |
Winiarska A, Knysak M, Nabrdalik K, et al. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists[J]. Int J Mol Sci, 2021, 22(19): 10822.
doi: 10.3390/ijms221910822 URL |
[14] |
Wang L, Wang HL, Liu TT, et al. TGF-beta as a master regulator of diabetic nephropathy[J]. Int J Mol Sci, 2021, 22(15): 7881.
doi: 10.3390/ijms22157881 URL |
[15] |
Hernandez LF, Eguchi N, Whaley D, et al. Anti-oxidative therapy in diabetic nephropathy[J]. Front Biosci (Schol Ed), 2022, 14(2): 14.
doi: 10.31083/j.fbs1402014 pmid: 35730439 |
[16] | Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: basic and clinical aspects—a general perspective[J]. Endocrinol Diabetes Nutr (Engl Ed), 2022, 69(1): 52-62. |
[17] |
Lin YC, Chang YH, Yang SY, et al. Update of pathophysiology and management of diabetic kidney disease[J]. J Formos Med Assoc, 2018, 117(8): 662-675.
doi: 10.1016/j.jfma.2018.02.007 URL |
[18] |
Patel DM, Bose M, Cooper ME. Glucose and blood pressure-dependent pathways—the progression of diabetic kidney disease[J]. Int J Mol Sci, 2020, 21(6): 2218.
doi: 10.3390/ijms21062218 URL |
[19] | Tung CW, Hsu YC, Shih YH, et al. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy[J]. Nephrology (Carlton), 2018, 23 Suppl 4: 32-37. |
[20] |
Nomura H, Kuruppu S, Rajapakse NW. Stimulation of angiotensin converting enzyme 2: a novel treatment strategy for diabetic nephropathy[J]. Front Physiol, 2022, 12: 813012.
doi: 10.3389/fphys.2021.813012 URL |
[21] |
Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension[J]. Steroids, 2020, 163: 108701.
doi: 10.1016/j.steroids.2020.108701 URL |
[22] |
Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins Ⅰ and Ⅱ in anesthetized rats[J]. Hypertension, 2002, 39(1): 129-134.
doi: 10.1161/hy0102.100536 pmid: 11799091 |
[23] |
Singh R, Singh AK, Alavi N, et al. Mechanism of increased angiotensin Ⅱ levels in glomerular mesangial cells cultured in high glucose[J]. J Am Soc Nephrol, 2003, 14(4): 873-880.
doi: 10.1097/01.ASN.0000060804.40201.6E URL |
[24] |
Umanath K, Lewis JB. Update on diabetic nephropathy: core curriculum 2018[J]. Am J Kidney Dis, 2018, 71(6): 884-895.
doi: S0272-6386(17)31102-2 pmid: 29398179 |
[25] |
Jung SW, Moon JY. The role of inflammation in diabetic kidney disease[J]. Korean J Intern Med, 2021, 36(4): 753-766.
doi: 10.3904/kjim.2021.174 pmid: 34237822 |
[26] |
Pérez-Morales RE, Del Pino MD, Valdivielso JM, et al. Inflammation in diabetic kidney disease[J]. Nephron, 2019, 143(1): 12-16.
doi: 10.1159/000493278 URL |
[27] |
Pichler R, Afkarian M, Dieter BP, et al. Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets[J]. Am J Physiol Renal Physiol, 2017, 312(4): F716-F731.
doi: 10.1152/ajprenal.00314.2016 URL |
[28] |
Suzuki D, Miyazaki M, Naka R, et al. In situ hybridization of interleukin 6 in diabetic nephropathy[J]. Diabetes, 1995, 44(10): 1233-1238.
doi: 10.2337/diab.44.10.1233 pmid: 7556963 |
[29] |
Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806.
doi: 10.3390/ijms21082806 URL |
[30] |
Pickup JC, Chusney GD, Thomas SM, et al. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in type 2 diabetes[J]. Life Sci, 2000, 67(3): 291-300.
doi: 10.1016/s0024-3205(00)00622-6 pmid: 10983873 |
[31] |
Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806.
doi: 10.3390/ijms21082806 URL |
[32] |
Liu Y. Cellular and molecular mechanisms of renal fibrosis[J]. Nat Rev Nephrol, 2011, 7(12): 684-696.
doi: 10.1038/nrneph.2011.149 pmid: 22009250 |
[33] |
Tanase DM, Gosav EM, Anton MI, et al. Oxidative stress and NRF2/KEAP1/ARE pathway in diabetic kidney di-sease (DKD): new perspectives[J]. Biomolecules, 2022, 12(9): 1227.
doi: 10.3390/biom12091227 URL |
[34] |
Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy[J]. Nat Rev Nephrol, 2011, 7(6): 327-340.
doi: 10.1038/nrneph.2011.51 pmid: 21537349 |
[35] |
Tan SM, de Haan JB. Combating oxidative stress in diabetic complications with Nrf 2 activators: how much is too much?[J]. Redox Rep, 2014, 19(3):107-117.
doi: 10.1179/1351000214Y.0000000087 URL |
[36] | Hofni A, Ali FEM, Ibrahim ARN, et al. Renoprotective effect of thymoquinone against streptozotocin-induced diabetic nephropathy: role of NOX2 and Nrf2 signals[J]. Curr Mol Pharmacol, 2023, 16(8): 905-914. |
[37] |
Menne J, Park JK, Boehne M, et al. Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice[J]. Diabetes, 2004, 53(8): 2101-2109.
pmid: 15277392 |
[38] |
Cheng YS, Chao J, Chen C, et al. The PKCβ-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy[J]. J Pharm Pharmacol, 2019, 71(3): 338-347.
doi: 10.1111/jphp.13043 URL |
[39] |
Ohshiro Y, Ma RC, Yasuda Y, et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expres-sion, and renal dysfunction in protein kinase Cβ-null mice[J]. Diabetes, 2006, 55(11): 3112-3120.
doi: 10.2337/db06-0895 pmid: 17065350 |
[40] | Xu J, Wang Y, Wang Z, et al. Fucoidan mitigated diabetic nephropathy through the downregulation of PKC and modulation of NF-κB signaling pathway: in vitro and in vivo investigations[J]. Phytother Res, 2021, 35(4): 2133-2144. |
[41] |
Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, et al. Cellular death, reactive oxygen species (ROS) and diabetic complications[J]. Cell Death Dis, 2018, 9(2):119.
doi: 10.1038/s41419-017-0135-z pmid: 29371661 |
[42] |
Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal, 2014, 20(7):1126-1167.
doi: 10.1089/ars.2012.5149 URL |
[43] | Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox?[J]. Oxid Med Cell Longev, 2016, 2016: 5698931. |
[44] |
Winiarska A, Knysak M, Nabrdalik K, et al. Inflammation and oxidative stress in diabetic kidney disease: the targets for SGLT2 inhibitors and GLP-1 receptor agonists[J]. Int J Mol Sci, 2021, 22(19): 10822.
doi: 10.3390/ijms221910822 URL |
[45] |
Cheng D, Liang R, Huang B, et al. Tumor necrosis factor-α blockade ameliorates diabetic nephropathy in rats[J]. Clin Kidney J, 2019, 14(1): 301-308.
doi: 10.1093/ckj/sfz137 URL |
[46] | 徐欢, 王伟铭. 延缓糖尿病肾病进展的措施[J]. 上海医学, 2020, 43(9): 575-580. |
[1] | 吴辉,富荣昌,杨晓玉,李现政,王召耀. 三种不同血液粘度模型中分叉血流的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 450-. |
[2] | 尚思雨, 相阳, 潘博涵.
褐藻寡糖对创面的生物学效应 :裂解程度依赖性
|
[3] | 宋震, 林广贤, 范飞. 皮瓣血流监测方法的研究进展 [J]. 组织工程与重建外科杂志, 2023, 19(1): 83-. |
[4] | 张小月, 王伟铭. 盐皮质激素受体拮抗剂在糖尿病肾病治疗中的研究进展[J]. 内科理论与实践, 2023, 18(03): 206-210. |
[5] | 段中华, 王宇华, 郭斯敏. 牙周病在非酒精性脂肪性肝病中的作用及机制研究进展[J]. 内科理论与实践, 2023, 18(02): 107-110. |
[6] | 周荣 综述 高伟成 审校. 老年性上睑下垂发生机制研究进展[J]. 组织工程与重建外科杂志, 2022, 18(3): 281-. |
[7] | 刘洋 徐慧 刘蔡钺 杨雅骊. 氢分子医学在皮肤美容的应用进展 [J]. 组织工程与重建外科杂志, 2021, 17(3): 278-. |
[8] | 孙艳, 代丹娇, 陈智伟, 张华清. 卡格列净对早期糖尿病肾病尿白蛋白/肌酐比值和尿足细胞相关蛋白裂隙素的影响[J]. 内科理论与实践, 2021, 16(06): 387-391. |
[9] | 缪雅, 杨玉琳, 朱怡洁, 盛长生, 田景琰. 糖化血红蛋白变异性与糖尿病微血管并发症关系的研究进展[J]. 内科理论与实践, 2021, 16(06): 427-430. |
[10] | 张斌, 吴志勇. 门静脉高压症食管胃底静脉曲张出血的个体化治疗和手术方式选择[J]. 外科理论与实践, 2021, 26(03): 185-188. |
[11] | 罗蒙, 李泓杰, 郑磊. 肝硬化门静脉高压症发病机制的研究现状[J]. 外科理论与实践, 2021, 26(03): 195-198. |
[12] | 李淑雨, 沈琳辉,. 2型糖尿病患者参考范围甲状腺激素与糖尿病肾病的相关性分析[J]. 内科理论与实践, 2020, 15(01): 38-44. |
[13] | 邓琳, 丁怡, 汪萍, 卞炳贤, 沈立松. 尿中性粒细胞明胶酶相关脂质运载蛋白/肌酐比值在2型糖尿病肾损伤的早期诊断及病情评估中的临床应用[J]. 诊断学理论与实践, 2019, 18(1): 61-65. |
[14] | 荣岚, 焦洁茹, 林青, 张永怡,. 胰岛素样生长因子1及半胱氨酸蛋白酶抑制剂C在老年2型糖尿病肾病患者中的变化[J]. 内科理论与实践, 2019, 14(02): 127-130. |
[15] | 罗颖, 钱洁敏, 陈晓薇, 马海燕, 许萍, 刘琳娜, 倪强. 气腹及病人体位对腹腔镜胆囊切除术血流动力学的影响[J]. 外科理论与实践, 2019, 24(01): 70-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||