盐皮质激素受体拮抗剂在糖尿病肾病治疗中的研究进展
Research progress of mineralocorticoid receptor antagonists in treatment of diabetic nephropathy
张小月, 王伟铭 . 盐皮质激素受体拮抗剂在糖尿病肾病治疗中的研究进展[J]. 内科理论与实践, 2023 , 18(03) : 206 -210 . DOI: 10.16138/j.1673-6087.2023.03.015
[1] | Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138:271-281. |
[2] | Shubrook JH, Neumiller JJ, Wright E. Management of chronic kidney disease in type 2 diabetes: screening, diagnosis and treatment goals, and recommendations[J]. Postgrad Med, 2022, 134(4): 376-387. |
[3] | Upadhya B, Kozak PM, Stacey RB, et al. Newer drugs to reduce high blood pressure and mitigate hypertensive target organ damage[J]. Curr Hypertens Rep, 2022, 24(1):1-20. |
[4] | Baran W, Krzemińska J, Szlagor M, et al. Mineralocorticoid receptor antagonists—use in chronic kidney disease[J]. Int J Mol Sci, 2021, 22(18): 9995. |
[5] | Zuo C, Xu G. Efficacy and safety of mineralocorticoid receptor antagonists with ACEI/ARB treatment for diabetic nephropathy[J]. Int J Clin Pract, 2019, 29: e13413. |
[6] | Hu Q, Yin L, Hartmann RW. Aldosterone synthase inhibitors as promising treatments for mineralocorticoid dependent cardiovascular and renal diseases[J]. J Med Chem, 2014, 57(12): 5011-5022. |
[7] | Dong D, Fan TT, Ji YS, et al. Spironolactone alleviates diabetic nephropathy through promoting autophagy in podocytes[J]. Int Urol Nephrol, 2019, 51(4): 755-764. |
[8] | Choudhury D, Tuncel M, Levi M. Diabetic nephropathy—a multifaceted target of new therapies[J]. Discov Med, 2010, 10(54): 406-415. |
[9] | Zhang YY, Yu Y, Yu C. Antifibrotic roles of RAAS blockers[J]. Adv Exp Med Biol, 2019, 1165: 671-691. |
[10] | Sonkodi S, Mogyorósi A. Treatment of diabetic nephropathy with angiotensin Ⅱ blockers[J]. Nephrol Dial Transplant, 2003, 18 Suppl 5:v21-v23. |
[11] | Hitomi H, Kiyomoto H, Nishiyama A, et al. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells[J]. Hypertension, 2007, 50(4): 750-755. |
[12] | Patel V, Joharapurkar A, Jain M. Role of mineralocorticoid receptor antagonists in kidney diseases[J]. Drug Dev Res, 2021, 82(3): 341-363. |
[13] | Fujisawa G, Okada K, Muto S, et al. Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats[J]. Kidney Int, 2004, 66(4): 1493-502. |
[14] | Blankenburg M, Kovesdy CP, Fett AK, et al. Disease characteristics and outcomes in patients with chronic kidney disease and type 2 diabetes: a matched cohort study of spironolactone users and non-users[J]. BMC Nephrol, 2020, 21(1): 61. |
[15] | Ebadi Z, Moradi N, Kazemi Fard T, et al. Captopril and spironolactone can attenuate diabetic nephropathy in Wistar rats by targeting microRNA-192 and microRNA-29a/b/c[J]. DNA Cell Biol, 2019, 38(10): 1134-1142. |
[16] | Kintscher U, Bakris GL, Kolkhof P. Novel non-steroidal mineralocorticoid receptor antagonists in cardiorenal disease[J]. Br J Pharmacol, 2022, 179(13):3220-3234. |
[17] | An J, Niu F, Sim JJ. Cardiovascular and kidney outcomes of spironolactone or eplerenone in combination with ACEI/ARBs in patients with diabetic kidney disease[J]. Pharmacotherapy, 2021, 41(12): 998-1008. |
[18] | Kovarik JJ, Kaltenecker CC, Domenig O, et al. Effect of mineralocorticoid receptor antagonism and ACE inhibition on angiotensin profiles in diabetic kidney disease[J]. Diabetes Ther, 2021, 12(9): 2485-2498. |
[19] | Greco EA, Feraco A, Marzolla V, et al. Nonsteroidal mineralcorticoid receptor antagonists: novel therapeutic implication in the management of patients with type 2 diabetes[J]. Curr Opin Pharmacol, 2021, 60: 216-225. |
[20] | Shenoy SV, Nagaraju SP, Bhojaraja MV, et al. Sodium-glucose cotransporter-2 inhibitors and non-steroidal mineralocorticoid receptor antagonists: ushering in a new era of nephroprotection beyond renin-angiotensin system blockade[J]. Nephrology (Carlton), 2021, 26(11): 858-871. |
[21] | Chaudhuri A, Ghanim H, Arora P. Improving the residual risk of renal and cardiovascular outcomes in diabetic kidney disease[J]. Diabetes Obes Metab, 2022, 24(3): 365-376. |
[22] | Ortiz A, Ferro CJ, Balafa O, et al. Mineralocorticoid receptor antagonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease[J]. Nephrol Dial Transplant, 2023, 38(1):10-25. |
[23] | Zheng Y, Ma S, Huang Q, et al. Meta-analysis of the efficacy and safety of finerenone in diabetic kidney disease[J]. Kidney Blood Press Res, 2022, 47(4):219-228. |
[24] | Sawaf H, Thomas G, Taliercio JJ, et al. Therapeutic advances in diabetic nephropathy[J]. J Clin Med, 2022, 11(2): 378. |
[25] | Filippatos G, Anker SD, Agarwal R, et al. Finerenone and cardiovascular outcomes in patients with chronic kidney disease and type 2 diabetes[J]. Circulation, 2021, 143(6): 540-552. |
[26] | Filippatos G, Anker SD, Agarwal R, et al. Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes[J]. Circulation, 2022, 145(6): 437-447. |
[27] | Rossing P, Filippatos G, Agarwal R, et al. Finerenone in predominantly advanced CKD and type 2 diabetes with or without sodium-glucose cotransporter-2 inhibitor therapy[J]. Kidney Int Rep, 2022, 7(1): 36-45. |
[28] | Jankovi? SM, Jankovi? SV. Clinical pharmacokinetics and pharmacodynamics of esaxerenone, a novel mineralocorticoid receptor antagonist[J]. Eur J Drug Metab Pharmacokinet, 2022, 47(3): 291-308. |
[29] | Wan N, Rahman A, Nishiyama A. Esaxerenone, a novel nonsteroidal mineralocorticoid receptor blocker (MRB) in hypertension and chronic kidney disease[J]. J Hum Hypertens, 2021, 35(2): 148-156. |
[30] | Bhuiyan AS, Rafiq K, Kobara H, et al. Effect of a novel nonsteroidal selective mineralocorticoid receptor antagonist, esaxerenone (CS-3150), on blood pressure and renal injury in high salt-treated type 2 diabetic mice[J]. Hypertens Res, 2019, 42(6): 892-902. |
[31] | Ito S, Shikata K, Nangaku M, et al. Efficacy and safety of esaxerenone (CS-3150) for the treatment of type 2 diabetes with microalbuminuria[J]. Clin J Am Soc Nephrol, 2019, 14(8): 1161-1172. |
[32] | Shikata K, Ito S, Kashihara N, et al. Reduction in the magnitude of serum potassium elevation in combination therapy with esaxerenone (CS-3150) and sodium-glucose cotransporter 2 inhibitor in patients with diabetic kidney disease[J]. J Diabetes Investig, 2022, 13(7): 1190-1202. |
[33] | Wada T, Inagaki M, Yoshinari T, et al. Apararenone in patients with diabetic nephropathy: results of a randomized, double-blind, placebo-controlled phase 2 dose-response study and open-label extension study[J]. Clin Exp Nephrol, 2021, 25(2): 120-130. |
[34] | Ilyas Z, Chaiban JT, Krikorian A. Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy[J]. Rev Endocr Metab Disord, 2017, 18(1): 21-28. |
[35] | Nielsen SE, Rossing K, Hess G, et al. The effect of RAAS blockade on markers of renal tubular damage in diabetic nephropathy: u-NGAL, u-KIM1 and u-LFABP[J]. Scand J Clin Lab Invest, 2012, 72(2): 137-142. |
[36] | Baran W, Krzemińska J, Szlagor M, et al. Mineralocorticoid receptor antagonists-use in chronic kidney disease[J]. Int J Mol Sci, 2021, 22(18): 9995. |
[37] | Zhang Q, Yang M, Xiao Y, et al. Towards better drug repositioning: targeted immunoinflammatory therapy for diabetic nephropathy[J]. Curr Med Chem, 2021, 28(5): 1003-1024. |
[38] | Lytvyn Y, Bjornstad P, Pun N, et al. New and old agents in the management of diabetic nephropathy[J]. Curr Opin Nephrol Hypertens, 2016, 25(3): 232-239. |
[39] | Rossing P, Persson F, Frimodt-M?ller M, et al. Linking kidney and cardiovascular complications in diabetes-impact on prognostication and treatment[J]. Diabetes, 2021, 70(1):39-50. |
[40] | Cortinovis M, Cattaneo D, Perico N, et al. Investigational drugs for diabetic nephropathy[J]. Expert Opin Investig Drugs, 2008, 17(10): 1487-500. |
[41] | Roscioni SS, Heerspink HJ, de Zeeuw D. The effect of RAAS blockade on the progression of diabetic nephropathy[J]. Nat Rev Nephrol, 2014, 10(2): 77-87. |
/
〈 |
|
〉 |