内科理论与实践 ›› 2023, Vol. 18 ›› Issue (03): 206-210.doi: 10.16138/j.1673-6087.2023.03.015
收稿日期:
2022-10-17
出版日期:
2023-06-30
发布日期:
2023-08-07
通讯作者:
王伟铭 E-mail:
ZHANG Xiaoyue1, WANG Weiming2()
Received:
2022-10-17
Online:
2023-06-30
Published:
2023-08-07
中图分类号:
张小月, 王伟铭. 盐皮质激素受体拮抗剂在糖尿病肾病治疗中的研究进展[J]. 内科理论与实践, 2023, 18(03): 206-210.
ZHANG Xiaoyue, WANG Weiming. Research progress of mineralocorticoid receptor antagonists in treatment of diabetic nephropathy[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(03): 206-210.
[1] |
Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138:271-281.
doi: 10.1016/j.diabres.2018.02.023 URL |
[2] |
Shubrook JH, Neumiller JJ, Wright E. Management of chronic kidney disease in type 2 diabetes: screening, diagnosis and treatment goals, and recommendations[J]. Postgrad Med, 2022, 134(4): 376-387.
doi: 10.1080/00325481.2021.2009726 URL |
[3] |
Upadhya B, Kozak PM, Stacey RB, et al. Newer drugs to reduce high blood pressure and mitigate hypertensive target organ damage[J]. Curr Hypertens Rep, 2022, 24(1):1-20.
doi: 10.1007/s11906-022-01166-9 pmid: 35165832 |
[4] |
Baran W, Krzemińska J, Szlagor M, et al. Mineralocorticoid receptor antagonists—use in chronic kidney disease[J]. Int J Mol Sci, 2021, 22(18): 9995.
doi: 10.3390/ijms22189995 URL |
[5] | Zuo C, Xu G. Efficacy and safety of mineralocorticoid receptor antagonists with ACEI/ARB treatment for diabetic nephropathy[J]. Int J Clin Pract, 2019, 29: e13413. |
[6] |
Hu Q, Yin L, Hartmann RW. Aldosterone synthase inhibitors as promising treatments for mineralocorticoid dependent cardiovascular and renal diseases[J]. J Med Chem, 2014, 57(12): 5011-5022.
doi: 10.1021/jm401430e pmid: 24422519 |
[7] |
Dong D, Fan TT, Ji YS, et al. Spironolactone alleviates diabetic nephropathy through promoting autophagy in podocytes[J]. Int Urol Nephrol, 2019, 51(4): 755-764.
doi: 10.1007/s11255-019-02074-9 pmid: 30734886 |
[8] | Choudhury D, Tuncel M, Levi M. Diabetic nephropathy—a multifaceted target of new therapies[J]. Discov Med, 2010, 10(54): 406-415. |
[9] | Zhang YY, Yu Y, Yu C. Antifibrotic roles of RAAS blockers[J]. Adv Exp Med Biol, 2019, 1165: 671-691. |
[10] | Sonkodi S, Mogyorósi A. Treatment of diabetic nephropathy with angiotensin Ⅱ blockers[J]. Nephrol Dial Transplant, 2003, 18 Suppl 5:v21-v23. |
[11] |
Hitomi H, Kiyomoto H, Nishiyama A, et al. Aldosterone suppresses insulin signaling via the downregulation of insulin receptor substrate-1 in vascular smooth muscle cells[J]. Hypertension, 2007, 50(4): 750-755.
pmid: 17646573 |
[12] |
Patel V, Joharapurkar A, Jain M. Role of mineralocorticoid receptor antagonists in kidney diseases[J]. Drug Dev Res, 2021, 82(3): 341-363.
doi: 10.1002/ddr.v82.3 URL |
[13] |
Fujisawa G, Okada K, Muto S, et al. Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats[J]. Kidney Int, 2004, 66(4): 1493-502.
doi: 10.1111/j.1523-1755.2004.00913.x pmid: 15458443 |
[14] |
Blankenburg M, Kovesdy CP, Fett AK, et al. Disease characteristics and outcomes in patients with chronic kidney disease and type 2 diabetes: a matched cohort study of spironolactone users and non-users[J]. BMC Nephrol, 2020, 21(1): 61.
doi: 10.1186/s12882-020-01719-7 pmid: 32101152 |
[15] |
Ebadi Z, Moradi N, Kazemi Fard T, et al. Captopril and spironolactone can attenuate diabetic nephropathy in Wistar rats by targeting microRNA-192 and microRNA-29a/b/c[J]. DNA Cell Biol, 2019, 38(10): 1134-1142.
doi: 10.1089/dna.2019.4732 pmid: 31433203 |
[16] |
Kintscher U, Bakris GL, Kolkhof P. Novel non-steroidal mineralocorticoid receptor antagonists in cardiorenal disease[J]. Br J Pharmacol, 2022, 179(13):3220-3234.
doi: 10.1111/bph.v179.13 URL |
[17] |
An J, Niu F, Sim JJ. Cardiovascular and kidney outcomes of spironolactone or eplerenone in combination with ACEI/ARBs in patients with diabetic kidney disease[J]. Pharmacotherapy, 2021, 41(12): 998-1008.
doi: 10.1002/phar.v41.12 URL |
[18] |
Kovarik JJ, Kaltenecker CC, Domenig O, et al. Effect of mineralocorticoid receptor antagonism and ACE inhibition on angiotensin profiles in diabetic kidney disease[J]. Diabetes Ther, 2021, 12(9): 2485-2498.
doi: 10.1007/s13300-021-01118-7 |
[19] |
Greco EA, Feraco A, Marzolla V, et al. Nonsteroidal mineralcorticoid receptor antagonists: novel therapeutic implication in the management of patients with type 2 diabetes[J]. Curr Opin Pharmacol, 2021, 60: 216-225.
doi: 10.1016/j.coph.2021.07.010 pmid: 34474209 |
[20] |
Shenoy SV, Nagaraju SP, Bhojaraja MV, et al. Sodium-glucose cotransporter-2 inhibitors and non-steroidal mineralocorticoid receptor antagonists: ushering in a new era of nephroprotection beyond renin-angiotensin system blockade[J]. Nephrology (Carlton), 2021, 26(11): 858-871.
doi: 10.1111/nep.v26.11 URL |
[21] |
Chaudhuri A, Ghanim H, Arora P. Improving the residual risk of renal and cardiovascular outcomes in diabetic kidney disease[J]. Diabetes Obes Metab, 2022, 24(3): 365-376.
doi: 10.1111/dom.v24.3 URL |
[22] |
Ortiz A, Ferro CJ, Balafa O, et al. Mineralocorticoid receptor antagonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease[J]. Nephrol Dial Transplant, 2023, 38(1):10-25.
doi: 10.1093/ndt/gfab167 URL |
[23] |
Zheng Y, Ma S, Huang Q, et al. Meta-analysis of the efficacy and safety of finerenone in diabetic kidney disease[J]. Kidney Blood Press Res, 2022, 47(4):219-228.
doi: 10.1159/000521908 URL |
[24] |
Sawaf H, Thomas G, Taliercio JJ, et al. Therapeutic advances in diabetic nephropathy[J]. J Clin Med, 2022, 11(2): 378.
doi: 10.3390/jcm11020378 URL |
[25] |
Filippatos G, Anker SD, Agarwal R, et al. Finerenone and cardiovascular outcomes in patients with chronic kidney disease and type 2 diabetes[J]. Circulation, 2021, 143(6): 540-552.
doi: 10.1161/CIRCULATIONAHA.120.051898 pmid: 33198491 |
[26] |
Filippatos G, Anker SD, Agarwal R, et al. Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes[J]. Circulation, 2022, 145(6): 437-447.
doi: 10.1161/CIRCULATIONAHA.121.057983 URL |
[27] |
Rossing P, Filippatos G, Agarwal R, et al. Finerenone in predominantly advanced CKD and type 2 diabetes with or without sodium-glucose cotransporter-2 inhibitor therapy[J]. Kidney Int Rep, 2022, 7(1): 36-45.
doi: 10.1016/j.ekir.2021.10.008 pmid: 35005312 |
[28] |
Janković SM, Janković SV. Clinical pharmacokinetics and pharmacodynamics of esaxerenone, a novel mineralocorticoid receptor antagonist[J]. Eur J Drug Metab Pharmacokinet, 2022, 47(3): 291-308.
doi: 10.1007/s13318-022-00760-1 |
[29] |
Wan N, Rahman A, Nishiyama A. Esaxerenone, a novel nonsteroidal mineralocorticoid receptor blocker (MRB) in hypertension and chronic kidney disease[J]. J Hum Hypertens, 2021, 35(2): 148-156.
doi: 10.1038/s41371-020-0377-6 |
[30] |
Bhuiyan AS, Rafiq K, Kobara H, et al. Effect of a novel nonsteroidal selective mineralocorticoid receptor antagonist, esaxerenone (CS-3150), on blood pressure and renal injury in high salt-treated type 2 diabetic mice[J]. Hypertens Res, 2019, 42(6): 892-902.
doi: 10.1038/s41440-019-0211-0 pmid: 30664703 |
[31] |
Ito S, Shikata K, Nangaku M, et al. Efficacy and safety of esaxerenone (CS-3150) for the treatment of type 2 diabetes with microalbuminuria[J]. Clin J Am Soc Nephrol, 2019, 14(8): 1161-1172.
doi: 10.2215/CJN.14751218 URL |
[32] |
Shikata K, Ito S, Kashihara N, et al. Reduction in the magnitude of serum potassium elevation in combination therapy with esaxerenone (CS-3150) and sodium-glucose cotransporter 2 inhibitor in patients with diabetic kidney disease[J]. J Diabetes Investig, 2022, 13(7): 1190-1202.
doi: 10.1111/jdi.v13.7 URL |
[33] |
Wada T, Inagaki M, Yoshinari T, et al. Apararenone in patients with diabetic nephropathy: results of a randomized, double-blind, placebo-controlled phase 2 dose-response study and open-label extension study[J]. Clin Exp Nephrol, 2021, 25(2): 120-130.
doi: 10.1007/s10157-020-01963-z |
[34] |
Ilyas Z, Chaiban JT, Krikorian A. Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy[J]. Rev Endocr Metab Disord, 2017, 18(1): 21-28.
doi: 10.1007/s11154-017-9422-3 URL |
[35] |
Nielsen SE, Rossing K, Hess G, et al. The effect of RAAS blockade on markers of renal tubular damage in diabetic nephropathy: u-NGAL, u-KIM1 and u-LFABP[J]. Scand J Clin Lab Invest, 2012, 72(2): 137-142.
doi: 10.3109/00365513.2011.645055 URL |
[36] |
Baran W, Krzemińska J, Szlagor M, et al. Mineralocorticoid receptor antagonists-use in chronic kidney disease[J]. Int J Mol Sci, 2021, 22(18): 9995.
doi: 10.3390/ijms22189995 URL |
[37] |
Zhang Q, Yang M, Xiao Y, et al. Towards better drug repositioning: targeted immunoinflammatory therapy for diabetic nephropathy[J]. Curr Med Chem, 2021, 28(5): 1003-1024.
doi: 10.2174/0929867326666191108160643 URL |
[38] |
Lytvyn Y, Bjornstad P, Pun N, et al. New and old agents in the management of diabetic nephropathy[J]. Curr Opin Nephrol Hypertens, 2016, 25(3): 232-239.
doi: 10.1097/MNH.0000000000000214 URL |
[39] |
Rossing P, Persson F, Frimodt-Møller M, et al. Linking kidney and cardiovascular complications in diabetes-impact on prognostication and treatment[J]. Diabetes, 2021, 70(1):39-50.
doi: 10.2337/dbi19-0038 pmid: 33355308 |
[40] |
Cortinovis M, Cattaneo D, Perico N, et al. Investigational drugs for diabetic nephropathy[J]. Expert Opin Investig Drugs, 2008, 17(10): 1487-500.
doi: 10.1517/13543784.17.10.1487 URL |
[41] |
Roscioni SS, Heerspink HJ, de Zeeuw D. The effect of RAAS blockade on the progression of diabetic nephropathy[J]. Nat Rev Nephrol, 2014, 10(2): 77-87.
doi: 10.1038/nrneph.2013.251 pmid: 24296623 |
[1] | 毕礼明, 王朝晖. 糖尿病肾病发病机制研究进展[J]. 内科理论与实践, 2023, 18(03): 201-205. |
[2] | 赖莉琴, 龚艳春. 原发性醛固酮增多症慢性肾损伤的研究进展[J]. 内科理论与实践, 2023, 18(03): 211-214. |
[3] | 中华医学会内分泌学分会. 肾上腺疾病新型冠状病毒感染临床应对指南[J]. 内科理论与实践, 2023, 18(01): 16-17. |
[4] | 中华医学会内分泌学分会. 新型冠状病毒肺炎疫情下肾上腺疾病管理专家建议[J]. 诊断学理论与实践, 2022, 21(02): 139-142. |
[5] | 孙艳, 代丹娇, 陈智伟, 张华清. 卡格列净对早期糖尿病肾病尿白蛋白/肌酐比值和尿足细胞相关蛋白裂隙素的影响[J]. 内科理论与实践, 2021, 16(06): 387-391. |
[6] | 缪雅, 杨玉琳, 朱怡洁, 盛长生, 田景琰. 糖化血红蛋白变异性与糖尿病微血管并发症关系的研究进展[J]. 内科理论与实践, 2021, 16(06): 427-430. |
[7] | 胡哲, 陈歆, 罗芳秀, 初少莉, 王继光. 肾上腺醛固酮和皮质醇共分泌瘤一例报告[J]. 诊断学理论与实践, 2020, 19(05): 525-527. |
[8] | 王春花, 祁爽, 王敏. 原发性醛固酮增多症合并无痛性心肌梗死一例报告[J]. 诊断学理论与实践, 2020, 19(05): 528-530. |
[9] | 蒋怡然, 王卫庆. 原发性醛固酮增多症的诊治现状及展望[J]. 诊断学理论与实践, 2020, 19(05): 445-449. |
[10] | 陈歆, 程艾邦, 许建忠, 李燕, 王继光. 中国高血压患者原发性醛固酮增多症的前瞻性筛查研究进展[J]. 诊断学理论与实践, 2020, 19(05): 450-453. |
[11] | 中国高血压联盟. 高血压患者原发性醛固酮增多症筛查诊治流程[J]. 诊断学理论与实践, 2020, 19(05): 454-459. |
[12] | 程艾邦, 李明轩, 陈波, 曹晟, 蒋塨豪, 许建忠, 李燕, 王继光. 化学发光免疫分析法检测血浆肾素、醛固酮在原发性醛固酮增多症诊断中的价值[J]. 诊断学理论与实践, 2020, 19(05): 474-480. |
[13] | 李淑雨, 沈琳辉,. 2型糖尿病患者参考范围甲状腺激素与糖尿病肾病的相关性分析[J]. 内科理论与实践, 2020, 15(01): 38-44. |
[14] | 邓琳, 丁怡, 汪萍, 卞炳贤, 沈立松. 尿中性粒细胞明胶酶相关脂质运载蛋白/肌酐比值在2型糖尿病肾损伤的早期诊断及病情评估中的临床应用[J]. 诊断学理论与实践, 2019, 18(1): 61-65. |
[15] | 康健捷, 苏佩珣, 邓兵梅, 杨红军, 王卓才. 肾上腺腺瘤型原发性醛固酮增多症并发横纹肌溶解症一例[J]. 诊断学理论与实践, 2019, 18(05): 583-584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||