抗甲状腺药物导致粒细胞缺乏研究进展
收稿日期: 2024-05-31
网络出版日期: 2024-11-11
基金资助
国家重点研发计划课题(2023YFC2508303);辽宁省教育厅高校基本科研项目(LJ212410159030);北京医学奖励基金会课题(YXJZ-2024-0350-0089)
Research progress on agranulocytosis caused by antithyroid drugs
Received date: 2024-05-31
Online published: 2024-11-11
田若辰 , 李静 . 抗甲状腺药物导致粒细胞缺乏研究进展[J]. 内科理论与实践, 2024 , 19(04) : 264 -268 . DOI: 10.16138/j.1673-6087.2024.04.09
In China, antithyroid drugs are the first choice of treatment for hyperthyroidism. However, their side effects may result in agranulocytosis, which has an insidious onset and requires urgent treatment. Up to date,the mechanisms of agranulocytosis caused by antithyroid drugs is still unclear. Herein, the article reviewed the direct toxic activities, the immune effects, and the genetic susceptibility of antithyroid drugs, which may be helpful to provide better clinical treatment options and improve the prognosis of agranulocytosis caused by the drugs.
Key words: Antithyroid drugs; Mechanisms; Agranulocytosis; Hyperthyroidism
[1] | Azizi F, Abdi H, Mehran L, et al. Appropriate duration of antithyroid drug treatment as a predictor for relapse of Graves’ disease: a systematic scoping review[J]. J Endocrinol Invest, 2022, 45(6):1139-1150. |
[2] | 陈诗, 刘庆阳, 朱艳. 甲状腺功能异常与肝损害相关性研究进展[J]. 中国实用内科杂志, 2023, 43(02):165-170. |
[3] | Azizi F. Long-term treatment of hyperthyroidism with antithyroid drugs: 35 years of personal clinical experience[J]. Thyroid, 2020, 30(10):1451-1457. |
[4] | Li J, Zhang X, Li L, et al. Risk factors for granulocytopenia in patients with Graves’ disease receiving antithyroid drugs[J]. Int J Endocrinol, 2023,2023:9935195. |
[5] | Harshman LA, Williams R, Engen RM. Neutropenia in pediatric solid organ transplant[J]. Pediatr Transplant, 2022, 26(8):e14378. |
[6] | Kamitani F, Nishioka Y, Koizumi M, et al. Antithyroid drug-induced leukopenia and G-CSF administration: a long-term cohort study[J]. Sci Rep, 2023, 13(1):19336. |
[7] | El-shreIif HJ. Agranulocytosis: a rare complication of the thionamides[J]. Egypt J Intern Med, 2023, 35(1): 59. |
[8] | Tseng CH, Tseng CL, Chen HS, et al. Clinical characteristics of neutropenic patients under antithyroid drug: twelve-year experience in a medical center[J]. J Chin Med Assoc, 2023, 86(9):826-834. |
[9] | Cheetham T. How to use thionamide anti-thyroid drug in the young- what’s new?[J]. Thyroid Res, 2021, 14(1):18. |
[10] | Vicente N, Cardoso L, Barros L, et al. Antithyroid drug-induced agranulocytosis: state of the art on diagnosis and management[J]. Drugs R D, 2017, 17(1):91-96. |
[11] | Lee HG, Yang EM, Kim CJ. Efficacy and adverse events related to the initial dose of methimazole in children and adolescents with Graves’ disease[J]. Ann Pediatr Endocrinol Metab, 2021, 26(3):199-204. |
[12] | Karmisholt J, Andersen SL, Bulow-Pedersen I, et al. Long-term methimazole therapy in Graves’ hyperthyroidism and adverse reactions: a Danish multicenter study[J]. Eur Thyroid J, 2022, 11(3):e220031. |
[13] | Chaudhry LA, Mauzen KF, Ba-Essa E, et al. Antithyroid drug induced a granulocytosis: what still we need to learn?[J]. Pan Afr Med J, 2016,23:27. |
[14] | Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, et al. Decoding the role of CYP450 enzymes in metabolism and disease: a comprehensive review[J]. Biomedicines, 2024, 12(7):1467. |
[15] | Rizo-Téllez SA, Sekheri M, Filep JG. Myeloperoxidase: regulation of neutrophil function and target for therapy[J]. Antioxidants (Basel), 2022, 11(11):2302. |
[16] | Venkatakrishnan V, Elmwall J, Lahiri T, et al. Novel inhibitory effect of galectin-3 on the respiratory burst induced by staphylococcus aureus in human neutrophils[J]. Glycobiology, 2023, 33(6):503-511. |
[17] | Ramani S, Pathak A, Dalal V, et al. Oxidative stress in autoimmune diseases: an under dealt malice[J]. Curr Protein Pept Sci, 2020, 21(6):611-621. |
[18] | Schmidt F, Wolf R, Baumann L, et al. Ultrastructural alterations in thyrocytes of zebrafish ( danio rerio) after exposure to propylthiouracil and perchlorate[J]. Toxicol Pathol, 2017, 45(5):649-662. |
[19] | Yaz?c? ?, Kara M, Boran T, et al. The role of endoplasmic reticulum stress in cell injury induced by methimazole on pancreatic cells[J]. Adv Pharm Bull, 2023, 13(1):196-201. |
[20] | Harper L, Chin L, Daykin J, et al. Propylthiouracil and carbimazole associated-antineutrophil cytoplasmic antibodies (ANCA) in patients with Graves’ disease[J]. Clin Endocrinol (Oxf), 2004, 60(6):671-675. |
[21] | Johnston A, Uetrecht J. Current understanding of the mechanisms of idiosyncratic drug-induced agranulocytosis[J]. Expert Opin Drug Metab Toxicol, 2015, 11(2):243-257. |
[22] | Litao MKS, Alvarez AG, Shah B. Pre-treatment neutropenia in children and adolescents with autoimmune hyperthyroidism[J]. J Clin Res Pediatr Endocrinol, 2021, 13(3):263-268. |
[23] | Lee H, Jose PA. Coordinated contribution of NADPH oxidase- and mitochondria-derived reactive oxygen species in metabolic syndrome and its implication in renal dysfunction[J]. Front Pharmacol, 2021,12:670076. |
[24] | Camacho V, Kuznetsova V, Welner RS. Inflammatory cytokines shape an altered immune response during myeloid malignancies[J]. Front Immunol, 2021,12:772408. |
[25] | Su B, Ren Y, Yao W, et al. Mitochondrial dysfunction and NLRP3 inflammasome: key players in kidney stone formation[J]. BJU Int, 2024. [Epub ahead of print]. |
[26] | Blevins HM, Xu Y, Biby S, et al. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022,14:879021. |
[27] | Wang L, Hauenstein AV. The NLRP3 inflammasome: mechanism of action, role in disease and therapies[J]. Mol Aspects Med, 2020,76:100889. |
[28] | Yu X, Hu Y, Wu Y, et al. The c-Myc-regulated miR-17-92 cluster mediates ATRA-induced APL cell differentiation[J]. Asia Pac J Clin Oncol, 2019, 15(6):364-370. |
[29] | Yang J, Lv Y, Zhang Y, et al. Decreased miR-17-92 cluster expression level in serum and granulocytes preceding onset of antithyroid drug-induced agranulocytosis[J]. Endocrine, 2018, 59(1):218-225. |
[30] | Ramsbottom KA, Carr DF, Rigden DJ, et al. Informatics investigations into anti-thyroid drug induced agranulocytosis associated with multiple HLA-B alleles[J]. PLoS One, 2020, 15(2):e0220754. |
[31] | Chen WT, Chi CC. Associations of HLA genotypes with antithyroid drug-induced agranulocytosis: a systematic review and meta-analysis of pharmacogenomics studies[J]. Br J Clin Pharmacol, 2019, 85(9):1878-1887. |
[32] | Kamal S, Kerndt CC, Lappin SL. Genetics, histocompatibility antigen[M/OL]. 2023. https://www.ncbi.nlm.nih.gov/books/NBK541023/. |
[33] | Chen PL, Shih SR, Wang PW, et al. Genetic determinants of antithyroid drug-induced agranulocytosis by human leukocyte antigen genotyping and genome-wide association study[J]. Nat Commun, 2015,6:7633. |
[34] | He Y, Zheng J, Zhang Q, et al. Association of HLA-B and HLA-DRB1 polymorphisms with antithyroid drug-induced agranulocytosis in a Han population from northern China[J]. Sci Rep, 2017, 7(1):11950. |
[35] | Hallberg P, Eriksson N, Iba?ez L, et al. Genetic variants associated with antithyroid drug-induced agranulocytosis: a genome-wide association study in a European population[J]. Lancet Diabetes Endocrinol, 2016, 4(6):507-516. |
[36] | Jarolímová M, Kazmí? M. Záva?ná autoimunitní tyreotoxikóza komplikovaná febrilní neutropenií jako ne?ádoucí ú?inek tyreostatické lé?by [Severe autoimune thyreotoxicosis complicated by febrile neutropenia as a result of thyreostatic therapy][J]. Vnitr Lek, 2023, 69(E-2):19-22. |
[37] | Toledo-Stuardo K, Ribeiro CH, Canals A, et al. Major histocompatibility complex class i-related chain A (MICA) allelic variants associate with susceptibility and prognosis of gastric cancer[J]. Front Immunol, 2021,12:645528. |
[38] | Ma P, Chen P, Gao J, et al. Association of MICA gene polymorphisms with thionamide-induced agranulocytosis[J]. J Endocrinol Invest, 2021, 44(2):363-369. |
[39] | Gong X, Chen P, Ma P, et al. MICA polymorphisms associated with antithyroid drug-induced agranulocytosis in the Chinese Han population[J]. Immun Inflamm Dis, 2020, 8(4):695-703. |
[40] | He Y, Ma P, Luo Y, et al. Novel association of KLRC4-KLRK1 gene polymorphisms with susceptibility and progression of antithyroid drug-induced agranulocytosis[J]. Exp Clin Endocrinol Diabetes, 2024, 132(1):17-22. |
[41] | Sooda A, Rwandamuriye F, Wanjalla CN, et al. Abacavir inhibits but does not cause self-reactivity to HLA-B*57:01-restricted EBV specific T cell receptors[J]. Commun Biol, 2022, 5(1):133. |
[42] | Pan RY, Chu MT, Wang CW, et al. Identification of drug-specific public TCR driving severe cutaneous adverse reactions[J]. Nat Commun, 2019, 10(1):3569. |
[43] | Plantinga TS, Arts P, Knarren GH, et al. Rare NOX3 variants confer susceptibility to agranulocytosis during thyrostatic treatment of Graves’ disease[J]. Clin Pharmacol Ther, 2017, 102(6):1017-1024. |
[44] | Kang Z, Fu P, Ma H, et al. Distinct functions of EHMT1 and EHMT2 in cancer chemotherapy and immunotherapy[J]. bioRxiv, 2023.[Epub ahead of print]. |
[45] | Jin S, Li X, Fan Y, et al. Association between genetic polymorphisms of SLCO1B1 and susceptibility to methimazole-induced liver injury[J]. Basic Clin Pharmacol Toxicol, 2019, 125(6):508-517. |
[46] | Phillips IR, Shephard EA. Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease[J]. Xenobiotica, 2020, 50(1):19-33. |
[47] | He YY, Hasan AME, Zhang Q, et al. Novel association between flavin-containing monooxygenase 3 gene polymorphism and antithyroid drug-induced agranulocytosis in the han population[J]. Ann Nutr Metab, 2019, 74(3):200-206. |
/
〈 |
|
〉 |