内科理论与实践 ›› 2024, Vol. 19 ›› Issue (04): 264-268.doi: 10.16138/j.1673-6087.2024.04.09
田若辰1, 李静2
收稿日期:
2024-05-31
出版日期:
2024-08-28
发布日期:
2024-11-11
基金资助:
TIAN Ruochen1, LI Jing2
Received:
2024-05-31
Online:
2024-08-28
Published:
2024-11-11
摘要:
在我国,抗甲状腺药物是治疗甲状腺功能亢进症的首选治疗手段,然而不良反应为粒细胞缺乏症,该病起病隐匿,一经发现需要紧急处理。目前国内外对于抗甲状腺药物导致粒细胞缺乏症机制尚不明确,本文从药物的直接毒性作用、免疫作用、基因易感性等方面进行综述,以期为临床提供更优的治疗方案和预后。
中图分类号:
田若辰, 李静. 抗甲状腺药物导致粒细胞缺乏研究进展[J]. 内科理论与实践, 2024, 19(04): 264-268.
TIAN Ruochen, LI Jing. Research progress on agranulocytosis caused by antithyroid drugs[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(04): 264-268.
[1] | Azizi F, Abdi H, Mehran L, et al. Appropriate duration of antithyroid drug treatment as a predictor for relapse of Graves’ disease: a systematic scoping review[J]. J Endocrinol Invest, 2022, 45(6):1139-1150. |
[2] | 陈诗, 刘庆阳, 朱艳. 甲状腺功能异常与肝损害相关性研究进展[J]. 中国实用内科杂志, 2023, 43(02):165-170. |
[3] | Azizi F. Long-term treatment of hyperthyroidism with antithyroid drugs: 35 years of personal clinical experience[J]. Thyroid, 2020, 30(10):1451-1457. |
[4] | Li J, Zhang X, Li L, et al. Risk factors for granulocytopenia in patients with Graves’ disease receiving antithyroid drugs[J]. Int J Endocrinol, 2023,2023:9935195. |
[5] | Harshman LA, Williams R, Engen RM. Neutropenia in pediatric solid organ transplant[J]. Pediatr Transplant, 2022, 26(8):e14378. |
[6] | Kamitani F, Nishioka Y, Koizumi M, et al. Antithyroid drug-induced leukopenia and G-CSF administration: a long-term cohort study[J]. Sci Rep, 2023, 13(1):19336. |
[7] | El-shreIif HJ. Agranulocytosis: a rare complication of the thionamides[J]. Egypt J Intern Med, 2023, 35(1): 59. |
[8] | Tseng CH, Tseng CL, Chen HS, et al. Clinical characteristics of neutropenic patients under antithyroid drug: twelve-year experience in a medical center[J]. J Chin Med Assoc, 2023, 86(9):826-834. |
[9] |
Cheetham T. How to use thionamide anti-thyroid drug in the young- what’s new?[J]. Thyroid Res, 2021, 14(1):18.
doi: 10.1186/s13044-021-00109-x pmid: 34289872 |
[10] |
Vicente N, Cardoso L, Barros L, et al. Antithyroid drug-induced agranulocytosis: state of the art on diagnosis and management[J]. Drugs R D, 2017, 17(1):91-96.
doi: 10.1007/s40268-017-0172-1 pmid: 28105610 |
[11] | Lee HG, Yang EM, Kim CJ. Efficacy and adverse events related to the initial dose of methimazole in children and adolescents with Graves’ disease[J]. Ann Pediatr Endocrinol Metab, 2021, 26(3):199-204. |
[12] | Karmisholt J, Andersen SL, Bulow-Pedersen I, et al. Long-term methimazole therapy in Graves’ hyperthyroidism and adverse reactions: a Danish multicenter study[J]. Eur Thyroid J, 2022, 11(3):e220031. |
[13] | Chaudhry LA, Mauzen KF, Ba-Essa E, et al. Antithyroid drug induced a granulocytosis: what still we need to learn?[J]. Pan Afr Med J, 2016,23:27. |
[14] | Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, et al. Decoding the role of CYP450 enzymes in metabolism and disease: a comprehensive review[J]. Biomedicines, 2024, 12(7):1467. |
[15] | Rizo-Téllez SA, Sekheri M, Filep JG. Myeloperoxidase: regulation of neutrophil function and target for therapy[J]. Antioxidants (Basel), 2022, 11(11):2302. |
[16] |
Venkatakrishnan V, Elmwall J, Lahiri T, et al. Novel inhibitory effect of galectin-3 on the respiratory burst induced by staphylococcus aureus in human neutrophils[J]. Glycobiology, 2023, 33(6):503-511.
doi: 10.1093/glycob/cwad032 pmid: 37073717 |
[17] | Ramani S, Pathak A, Dalal V, et al. Oxidative stress in autoimmune diseases: an under dealt malice[J]. Curr Protein Pept Sci, 2020, 21(6):611-621. |
[18] |
Schmidt F, Wolf R, Baumann L, et al. Ultrastructural alterations in thyrocytes of zebrafish ( danio rerio) after exposure to propylthiouracil and perchlorate[J]. Toxicol Pathol, 2017, 45(5):649-662.
doi: 10.1177/0192623317721748 pmid: 28830330 |
[19] |
Yazıcı Ö, Kara M, Boran T, et al. The role of endoplasmic reticulum stress in cell injury induced by methimazole on pancreatic cells[J]. Adv Pharm Bull, 2023, 13(1):196-201.
doi: 10.34172/apb.2023.042 pmid: 36721818 |
[20] | Harper L, Chin L, Daykin J, et al. Propylthiouracil and carbimazole associated-antineutrophil cytoplasmic antibodies (ANCA) in patients with Graves’ disease[J]. Clin Endocrinol (Oxf), 2004, 60(6):671-675. |
[21] | Johnston A, Uetrecht J. Current understanding of the mechanisms of idiosyncratic drug-induced agranulocytosis[J]. Expert Opin Drug Metab Toxicol, 2015, 11(2):243-257. |
[22] |
Litao MKS, Alvarez AG, Shah B. Pre-treatment neutropenia in children and adolescents with autoimmune hyperthyroidism[J]. J Clin Res Pediatr Endocrinol, 2021, 13(3):263-268.
doi: 10.4274/jcrpe.galenos.2020.2020.0184 pmid: 33261249 |
[23] | Lee H, Jose PA. Coordinated contribution of NADPH oxidase- and mitochondria-derived reactive oxygen species in metabolic syndrome and its implication in renal dysfunction[J]. Front Pharmacol, 2021,12:670076. |
[24] | Camacho V, Kuznetsova V, Welner RS. Inflammatory cytokines shape an altered immune response during myeloid malignancies[J]. Front Immunol, 2021,12:772408. |
[25] | Su B, Ren Y, Yao W, et al. Mitochondrial dysfunction and NLRP3 inflammasome: key players in kidney stone formation[J]. BJU Int, 2024. [Epub ahead of print]. |
[26] | Blevins HM, Xu Y, Biby S, et al. The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases[J]. Front Aging Neurosci, 2022,14:879021. |
[27] | Wang L, Hauenstein AV. The NLRP3 inflammasome: mechanism of action, role in disease and therapies[J]. Mol Aspects Med, 2020,76:100889. |
[28] | Yu X, Hu Y, Wu Y, et al. The c-Myc-regulated miR-17-92 cluster mediates ATRA-induced APL cell differentiation[J]. Asia Pac J Clin Oncol, 2019, 15(6):364-370. |
[29] |
Yang J, Lv Y, Zhang Y, et al. Decreased miR-17-92 cluster expression level in serum and granulocytes preceding onset of antithyroid drug-induced agranulocytosis[J]. Endocrine, 2018, 59(1):218-225.
doi: 10.1007/s12020-017-1481-4 pmid: 29255972 |
[30] | Ramsbottom KA, Carr DF, Rigden DJ, et al. Informatics investigations into anti-thyroid drug induced agranulocytosis associated with multiple HLA-B alleles[J]. PLoS One, 2020, 15(2):e0220754. |
[31] | Chen WT, Chi CC. Associations of HLA genotypes with antithyroid drug-induced agranulocytosis: a systematic review and meta-analysis of pharmacogenomics studies[J]. Br J Clin Pharmacol, 2019, 85(9):1878-1887. |
[32] | Kamal S, Kerndt CC, Lappin SL. Genetics, histocompatibility antigen[M/OL]. 2023. https://www.ncbi.nlm.nih.gov/books/NBK541023/. |
[33] | Chen PL, Shih SR, Wang PW, et al. Genetic determinants of antithyroid drug-induced agranulocytosis by human leukocyte antigen genotyping and genome-wide association study[J]. Nat Commun, 2015,6:7633. |
[34] | He Y, Zheng J, Zhang Q, et al. Association of HLA-B and HLA-DRB1 polymorphisms with antithyroid drug-induced agranulocytosis in a Han population from northern China[J]. Sci Rep, 2017, 7(1):11950. |
[35] | Hallberg P, Eriksson N, Ibañez L, et al. Genetic variants associated with antithyroid drug-induced agranulocytosis: a genome-wide association study in a European population[J]. Lancet Diabetes Endocrinol, 2016, 4(6):507-516. |
[36] |
Jarolímová M, Kazmíř M. Závažná autoimunitní tyreotoxikóza komplikovaná febrilní neutropenií jako nežádoucí účinek tyreostatické léčby [Severe autoimune thyreotoxicosis complicated by febrile neutropenia as a result of thyreostatic therapy][J]. Vnitr Lek, 2023, 69(E-2):19-22.
doi: 10.36290/vnl.2023.024 pmid: 37072262 |
[37] | Toledo-Stuardo K, Ribeiro CH, Canals A, et al. Major histocompatibility complex class i-related chain A (MICA) allelic variants associate with susceptibility and prognosis of gastric cancer[J]. Front Immunol, 2021,12:645528. |
[38] | Ma P, Chen P, Gao J, et al. Association of MICA gene polymorphisms with thionamide-induced agranulocytosis[J]. J Endocrinol Invest, 2021, 44(2):363-369. |
[39] | Gong X, Chen P, Ma P, et al. MICA polymorphisms associated with antithyroid drug-induced agranulocytosis in the Chinese Han population[J]. Immun Inflamm Dis, 2020, 8(4):695-703. |
[40] | He Y, Ma P, Luo Y, et al. Novel association of KLRC4-KLRK1 gene polymorphisms with susceptibility and progression of antithyroid drug-induced agranulocytosis[J]. Exp Clin Endocrinol Diabetes, 2024, 132(1):17-22. |
[41] |
Sooda A, Rwandamuriye F, Wanjalla CN, et al. Abacavir inhibits but does not cause self-reactivity to HLA-B*57:01-restricted EBV specific T cell receptors[J]. Commun Biol, 2022, 5(1):133.
doi: 10.1038/s42003-022-03058-9 pmid: 35173258 |
[42] | Pan RY, Chu MT, Wang CW, et al. Identification of drug-specific public TCR driving severe cutaneous adverse reactions[J]. Nat Commun, 2019, 10(1):3569. |
[43] |
Plantinga TS, Arts P, Knarren GH, et al. Rare NOX3 variants confer susceptibility to agranulocytosis during thyrostatic treatment of Graves’ disease[J]. Clin Pharmacol Ther, 2017, 102(6):1017-1024.
doi: 10.1002/cpt.733 pmid: 28486791 |
[44] | Kang Z, Fu P, Ma H, et al. Distinct functions of EHMT1 and EHMT2 in cancer chemotherapy and immunotherapy[J]. bioRxiv, 2023.[Epub ahead of print]. |
[45] | Jin S, Li X, Fan Y, et al. Association between genetic polymorphisms of SLCO1B1 and susceptibility to methimazole-induced liver injury[J]. Basic Clin Pharmacol Toxicol, 2019, 125(6):508-517. |
[46] |
Phillips IR, Shephard EA. Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease[J]. Xenobiotica, 2020, 50(1):19-33.
doi: 10.1080/00498254.2019.1643515 pmid: 31317802 |
[47] | He YY, Hasan AME, Zhang Q, et al. Novel association between flavin-containing monooxygenase 3 gene polymorphism and antithyroid drug-induced agranulocytosis in the han population[J]. Ann Nutr Metab, 2019, 74(3):200-206. |
[1] | 林森, 文书礼, 朱淼, 戴群, 鄢伦, 赵耀, 叶惠丽. 考虑碳交易机制的海港综合能源系统电-热混合储能优化配置[J]. 上海交通大学学报, 2024, 58(9): 1344-1356. |
[2] | 李利娟, 刘海, 刘红良, 张青松, 陈永东. 融合外部注意力机制的序列到点非侵入式负荷分解[J]. 上海交通大学学报, 2024, 58(6): 846-854. |
[3] | 李翠明, 王华, 徐龙儿, 王龙. 基于改进DeepLabv3+的光伏电站道路识别方法[J]. 上海交通大学学报, 2024, 58(5): 776-782. |
[4] | 卢白雪, 高伟成. 肌内脂肪浸润的研究进展 [J]. 组织工程与重建外科杂志, 2024, 20(4): 481-. |
[5] | 邢优靖1, 高金凤1, 刘小平1, 2, 吴平1. 带有时延和切换拓扑的二阶非线性多智能体系统事件触发固定时间一致性[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 625-639. |
[6] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[7] | 黄权印, 蔡益朝, 李浩, 唐晓, 王辰洋. 基于改进注意力机制的自适应航迹预测方法[J]. 空天防御, 2024, 7(3): 94-101. |
[8] | 许文腾, 刘磊, 刘梦觉. 基于混合推进机制的海上防空反导作战推演系统设计[J]. 空天防御, 2024, 7(3): 111-116. |
[9] | 郑鸿鲲, 单圣周, 季向阳, 等.
病理性瘢痕的多组学方法研究进展
[J]. 组织工程与重建外科杂志, 2024, 20(3): 362-. |
[10] | 陈珩, 王珏, 周栩. 紫外线辐射致皮肤老化机制的研究进展 [J]. 组织工程与重建外科杂志, 2024, 20(3): 382-. |
[11] | 陈昊蓝, 靳冰莹, 刘亚东, 钱庆林, 王鹏, 陈艳霞, 于希娟, 严英杰. 基于门控循环注意力网络的配电网故障识别方法[J]. 上海交通大学学报, 2024, 58(3): 295-303. |
[12] | 陈坤1, 2, 赵旭1, 董春玉1, 邸子超1, 陈宗枝1. 基于滤波器预测的抗遮挡目标跟踪算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 400-413. |
[13] | 张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7. 基于注意力的多通道网络红外弱小目标检测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[14] | 顾星海,花 豹,刘亚辉,孙学民,鲍劲松. 面向装配工艺文档的装配语义实体识别与关系构建方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556. |
[15] | 李东东, 王斌. 先天性黑素细胞痣的发病机制及诊疗策略[J]. 组织工程与重建外科杂志, 2024, 20(2): 254-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||