[1] |
Liyanage T, Ninomiya T, Jha V, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review[J]. Lancet, 2015, 385(9981): 1975-1982.
doi: 10.1016/S0140-6736(14)61601-9
URL
|
[2] |
Li PK, Lui SL, Ng JK, et al. Addressing the burden of dialysis around the world: a summary of the roundtable discussion on dialysis economics at the First International Congress of Chinese Nephrologists 2015[J]. Nephrology (Carlton), 2017, 22 Suppl 4: 3-8.
|
[3] |
Roberts MA, Polkinghorne KR, McDonald SP, et al. Se-cular trends in cardiovascular mortality rates of patients receiving dialysis compared with the general population[J]. Am J Kidney Dis, 2011, 58(1): 64-72.
doi: 10.1053/j.ajkd.2011.01.024
URL
|
[4] |
施建文, 曹亮, 施春艳. 血液透析信息化系统方案设计与实践[J]. 世界最新医学信息文摘, 2019, 19(73): 213-232.
|
[5] |
林珍, 王池凤, 邓琼丽, 等. 信息化管理在我院血透护理中的应用[J]. 名医, 2020, (1): 294.
|
[6] |
张宇, 米春香. 基于BS架构的血液透析患者排床管理系统开发[J]. 医学信息, 2020, 33(4): 20-22.
|
[7] |
李占霞, 黄嘉琳, 倪洁, 等. 电子信息化管理系统对血液透析室护理人员心理资本、工作投入状况的影响[J]. 实用临床医药杂志, 2020, 24(8): 26-28.
|
[8] |
张金霞, 丁晓仙, 陈益. 信息化管理系统在血透室专科指标监测管理中的应用体会[J]. 基层医学论坛, 2020, 24(3): 442-443.
|
[9] |
Brier ME, Gaweda AE. Predictive modeling for improved anemia management in dialysis patients[J]. Curr Opin Nephrol Hypertens, 2011, 20(6): 573-576.
doi: 10.1097/MNH.0b013e32834bba4e
URL
|
[10] |
Brier ME, Gaweda AE, Aronoff GR. Personalized anemia management and precision medicine in ESA and iron pharmacology in end-stage kidney disease[J]. Semin Nephrol, 2018, 38(4): 410-417.
doi: 10.1016/j.semnephrol.2018.05.010
URL
|
[11] |
Martínez-Martínez JM, Escandell-Montero P, Barbieri C, et al. Prediction of the hemoglobin level in hemodialysis patients using machine learning techniques[J]. Comput Methods Programs Biomed, 2014, 117(2): 208-217.
doi: 10.1016/j.cmpb.2014.07.001
URL
|
[12] |
Martín-Guerrero JD, Camps-Valls G, Soria-Olivas E, et al. Dosage individualization of erythropoietin using a profile-dependent support vector regression[J]. IEEE Trans Biomed Eng, 2003, 50(10): 1136-1142.
doi: 10.1109/TBME.2003.816084
URL
|
[13] |
Gaweda AE, Jacobs AA, Brier ME. Application of fuzzy logic to predicting erythropoietic response in hemodialysis patients[J]. Int J Artif Organs, 2008, 31(12): 1035-1042.
doi: 10.1177/039139880803101207
pmid: 19115195
|
[14] |
Barbieri C, Mari F, Stopper A, et al. A new machine learning approach for predicting the response to anemia treatment in a large cohort of end stage renal disease patients undergoing dialysis[J]. Comput Biol Med, 2015, 61: 56-61.
doi: 10.1016/j.compbiomed.2015.03.019
pmid: 25864164
|
[15] |
Burlacu A, Iftene A, Jugrin D, et al. Using artificial intelligence resources in dialysis and kidney transplant patients: a literature review[J]. Biomed Res Int, 2020, 2020: 9867872.
|
[16] |
Miskulin DC, Weiner DE, Tighiouart H, et al. Com-puterized decision support for EPO dosing in hemodialysis patients[J]. Am J Kidney Dis, 2009, 54(6): 1081-1088.
doi: 10.1053/j.ajkd.2009.07.010
pmid: 19781831
|
[17] |
Nordio M, Giove S, Lorenzi S, et al. A new approach to blood pressure and blood volume modulation during hemodialysis: an adaptive fuzzy control module[J]. Int J Artif Organs, 1995, 18(9): 513-517.
pmid: 8582768
|
[18] |
Niel O, Bastard P. Artificial intelligence in nephrology: core concepts, clinical applications, and perspectives[J]. Am J Kidney Dis, 2019, 74(6): 803-810.
doi: 10.1053/j.ajkd.2019.05.020
URL
|
[19] |
Xie G, Chen T, Li Y, et al. Artificial intelligence in nephrology: how can artificial intelligence augment nephrologists' intelligence?[J]. Kidney Dis (Basel), 2020, 6(1):1-6.
|