[1] |
Malik VS, Willet WC, Hu FB. Nearly a decade on - trends, risk factors and policy implications in global obesity[J]. Nat Rev Endocrinol, 2020, 16(11): 615-616.
doi: 10.1038/s41574-020-00411-y
URL
|
[2] |
Ng R, Sutradhar R, Yao Z, et al. Smoking, drinking, diet and physical activity-modifiable lifestyle risk factors and their associations with age to first chronic disease[J]. Int J Epidemiol, 2020, 49(1): 113-130.
doi: 10.1093/ije/dyz078
URL
|
[3] |
Kwok S, Adam S, Ho JH, et al. Obesity: a critical risk factor in the COVID-19 pandemic[J]. Clin Obes, 2020, 10(6): e12403.
|
[4] |
Breit SN, Brown DA, Tsai VW. The GDF15-GFRAL pathway in health and metabolic disease: friend or foe?[J]. Annu Rev Physiol, 2021, 83: 127-151.
doi: 10.1146/annurev-physiol-022020-045449
URL
|
[5] |
Tsai VW, Zhang HP, Manandhar R, et al. GDF 15 mediates adiposity resistance through actions on GFRAL neurons in the hindbrain AP/NTS[J]. Int J Obes (Lond), 2019, 43(12): 2370-2380.
doi: 10.1038/s41366-019-0365-5
URL
|
[6] |
Tsai VWW, Husaini Y, Sainsbury A, et al. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases[J]. Cell Metab, 2018, 28(3): 353-368.
doi: 10.1016/j.cmet.2018.07.018
URL
|
[7] |
Hsu JY, Crawley S, Chen M, et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15[J]. Nature, 2017, 550(7675): 255-259.
doi: 10.1038/nature24042
URL
|
[8] |
Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases[J]. J Diabetes Res, 2015, 2015: 490842.
|
[9] |
Lockhart SM, Saudek V, O’Rahilly S. GDF15: a hormone conveying somatic distress to the brain[J]. Endocr Rev, 2020, 41(4): 610-642.
|
[10] |
Chrysovergis K, Wang X, Kosak J, et al. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism[J]. Int J Obes (Lond), 2014, 38(12): 1555-1564.
doi: 10.1038/ijo.2014.27
URL
|
[11] |
Chung HK, Ryu D, Kim KS, et al. Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis[J]. J Cell Biol, 2017, 216(1): 149-165.
doi: 10.1083/jcb.201607110
pmid: 27986797
|
[12] |
Emmerson PJ, Wang F, Du Y, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL[J]. Nat Med. 2017, 23(10): 1215-1219.
doi: 10.1038/nm.4393
pmid: 28846098
|
[13] |
Laurens C, Parmar A, Murphy E, et al. Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans[J]. JCI Insight, 2020, 5(6): e131870.
doi: 10.1172/jci.insight.131870
URL
|
[14] |
Tsai VW, Zhang HP, Manandhar R, et al. Treatment with the TGF-b superfamily cytokine MIC-1/GDF15 reduces the adiposity and corrects the metabolic dysfunction of mice with diet-induced obesity[J]. Int J Obes (Lond), 2018, 42(3): 561-571.
doi: 10.1038/ijo.2017.258
URL
|
[15] |
Cannon B, Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies[J]. J Exp Biol, 2011, 214 Pt 2: 242-253.
|
[16] |
Campderrós L, Moure R, Cairó M, et al. Brown adipocytes secrete GDF15 in response to thermogenic activation[J]. Obesity (Silver Spring), 2019, 27(10): 1606-1616.
doi: 10.1002/oby.22584
URL
|
[17] |
Quesada-López T, Cereijo R, Turatsinze JV, et al. The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes[J]. Nat Commun, 2016, 7: 13479.
doi: 10.1038/ncomms13479
pmid: 27853148
|
[18] |
Flicker D, Sancak Y, Mick E, et al. Exploring the in vivo role of the mitochondrial calcium uniporter in brown fat bioenergetics[J]. Cell Rep, 2019, 27(5): 1364-1375.
doi: S2211-1247(19)30468-1
pmid: 31042465
|
[19] |
Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential[J]. Nat Med, 2013, 19(10): 1252-1263.
doi: 10.1038/nm.3361
URL
|
[20] |
Bargut TCL, Souza-Mello V, Aguila MB, et al. Browning of white adipose tissue: lessons from experimental models[J]. Horm Mol Biol Clin Investig, 2017, 31(1): 20160051.
|
[21] |
Ost M, Igual Gil C, Coleman V, et al. Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress[J]. EMBO Rep, 2020, 21(3): e48804.
|
[22] |
Geurts L, Everard A, Van Hul M, et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota[J]. Nat Commun, 2015, 6: 6495.
doi: 10.1038/ncomms7495
pmid: 25757720
|
[23] |
Tindle HA, Omalu B, Courcoulas A, et al. Risk of suicide after long-term follow-up from bariatric surgery[J]. Am J Med, 2010, 123(11): 1036-1042.
doi: 10.1016/j.amjmed.2010.06.016
URL
|
[24] |
Lee P, Smith S, Linderman J, et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans[J]. Diabetes, 2014, 63(11): 3686-3698.
doi: 10.2337/db14-0513
URL
|
[25] |
Oka M, Kobayashi N, Matsumura K, et al. New role for growth/differentiation factor 15 in the survival of transplanted brown adipose tissues in cooperation with interleukin-6[J]. Cells, 2020, 9(6): 1365.
doi: 10.3390/cells9061365
URL
|