Journal of Internal Medicine Concepts & Practice ›› 2022, Vol. 17 ›› Issue (03): 262-266.doi: 10.16138/j.1673-6087.2022.03.018
• Review article • Previous Articles Next Articles
Received:
2021-12-22
Online:
2022-05-30
Published:
2022-08-09
CLC Number:
[1] |
Watts RA, Hatemi G, Burns JC, et al. Global epidemiology of vasculitis[J]. Nat Rev Rheumatol, 2021, 18(1): 22-34.
doi: 10.1038/s41584-021-00718-8 URL |
[2] |
Sun Y, Yin MM, Ma LL, et al. Epidemiology of Takayasu arteritis in Shanghai: a hospital-based study and systematic review[J]. Int J Rheum Dis, 2021, 24(10): 1247-1256.
doi: 10.1111/1756-185X.14183 URL |
[3] | Hirsch MS, Aikat BK, Basu AK. Takayasu’s arteritis[J]. Bull Johns Hopkins Hosp, 1964, 115: 29-64. |
[4] |
Naito S, Arakawa K, Saito S, et al. Takayasu’s disease: association with HLA-B5[J]. Tissue Antigens, 1978, 12(2): 143-145.
pmid: 30183 |
[5] |
Terao C, Yoshifuji H, Matsumura T, et al. Genetic determinants and an epistasis of LILRA3 and HLA-B*52 in Takayasu arteritis[J]. Proc Natl Acad Sci U S A, 2018, 115(51): 13045-13050.
doi: 10.1073/pnas.1808850115 URL |
[6] |
Yajima M, Numano F, Park YB, et al. Comparative studies of patients with Takayasu arteritis in Japan, Korea and India-comparison of clinical manifestations, angiography and HLA-B antigen[J]. Jpn Circ J, 1994, 58(1): 9-14.
pmid: 7908064 |
[7] |
Vargas-Alarcón G, Hernández-Pacheco G, Soto ME, et al. Comparative study of the residues 63 and 67 on the HLA-B molecule in patients with Takayasu’s arteritis[J]. Immunol Lett, 2005, 96(2): 225-229.
pmid: 15585327 |
[8] |
Yoshida M, Kimura A, Katsuragi K, et al. DNA typing of HLA-B gene in Takayasu’s arteritis[J]. Tissue Antigens, 1993, 42(2): 87-90.
pmid: 7903491 |
[9] |
Kitamura H, Kobayashi Y, Kimura A, et al. Association of clinical manifestations with HLA-B alleles in Takayasu arteritis[J]. Int J Cardiol, 1998, 66 Suppl 1: S121-S126.
doi: 10.1016/s0167-5273(98)00159-4 pmid: 9951811 |
[10] |
Saruhan-Direskeneli G, Hughes T, Aksu K, et al. Identification of multiple genetic susceptibility loci in Takayasu arteritis[J]. Am J Hum Genet, 2013, 93(2): 298-305.
doi: 10.1016/j.ajhg.2013.05.026 pmid: 23830517 |
[11] |
Terao C, Yoshifuji H, Kimura A, et al. Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population[J]. Am J Hum Genet, 2013, 93(2): 289-297.
doi: 10.1016/j.ajhg.2013.05.024 URL |
[12] |
Terao C, Yoshifuji H, Kimura A, et al. Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population[J]. Am J Hum Genet, 2013, 93(2): 289-297.
doi: 10.1016/j.ajhg.2013.05.024 URL |
[13] |
Renauer PA, Saruhan-Direskeneli G, Coit P, et al. Identification of susceptibility loci in IL6, RPS9/LILRB3, and an intergenic locus on chromosome 21q22 in Takayasu arteritis in a genome-wide association study[J]. Arthritis Rheumatol, 2015, 67(5): 1361-1368.
doi: 10.1002/art.39035 URL |
[14] | Kong X, Sun Y, Ma L, et al. The critical role of IL-6 in the pathogenesis of Takayasu arteritis[J]. Clin Exp Rheumatol, 2016, 34(3 Suppl 97): S21-S27. |
[15] |
Kong X, Sawalha AH. Takayasu arteritis risk locus in IL6 represses the anti-inflammatory gene GPNMB through chromatin looping and recruiting MEF2-HDAC complex[J]. Ann Rheum Dis, 2019, 78(10): 1388-1397.
doi: 10.1136/annrheumdis-2019-215567 URL |
[16] |
Ripoll VM, Irvine KM, Ravasi T, et al. Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses[J]. J Immunol, 2007, 178(10): 6557-6566.
doi: 10.4049/jimmunol.178.10.6557 pmid: 17475886 |
[17] |
Ortiz-Fernández L, Saruhan-Direskeneli G, Alibaz-Oner F, et al. Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study[J]. Am J Hum Genet, 2021, 108(1): 84-99.
doi: 10.1016/j.ajhg.2020.11.014 pmid: 33308445 |
[18] |
Berti A, Dejaco C. Update on the epidemiology, risk factors, and outcomes of systemic vasculitides[J]. Best Pract Res Clin Rheumatol, 2018, 32(2): 271-294.
doi: 10.1016/j.berh.2018.09.001 URL |
[19] |
Pedreira ALS, Santiago MB. Association between Takayasu arteritis and latent or active mycobacterium tuberculosis infection: a systematic review[J]. Clin Rheumatol, 2020, 39(4): 1019-1026.
doi: 10.1007/s10067-019-04818-5 pmid: 31729680 |
[20] |
Zhang Y, Fan P, Luo F, et al. Tuberculosis in Takayasu arteritis: a retrospective study in 1105 Chinese patients[J]. J Geriatr Cardiol, 2019, 16(8): 648-655.
doi: 10.11909/j.issn.1671-5411.2019.08.003 pmid: 31555333 |
[21] |
Soto ME, Del Carmen ávila-Casado M, Huesca-Gómez C, et al. Detection of IS6110 and HupB gene sequences of Mycobacterium tuberculosis and bovis in the aortic tissue of patients with Takayasu’s arteritis[J]. BMC Infect Dis, 2012, 12: 194.
doi: 10.1186/1471-2334-12-194 URL |
[22] |
Kumar Chauhan S, Kumar Tripathy N, Sinha N, et al. Cellular and humoral immune responses to mycobacterial heat shock protein-65 and its human homologue in Takayasu’s arteritis[J]. Clin Exp Immunol, 2004, 138(3): 547-553.
pmid: 15544635 |
[23] | Li T, Gao N, Cui W, et al. Natural killer cells and their function in Takayasu’s arteritis[J]. Clin Exp Rheumatol, 2020, 38 Suppl 124(2):84-90. |
[24] |
Seko Y. Takayasu arteritis: insights into immunopathology[J]. Jpn Heart J, 2000, 41(1): 15-26.
pmid: 10807525 |
[25] |
Graver JC, Boots AMH, Haacke EA, et al. Massive B-cell infiltration and organization into artery tertiary lymphoid organs in the aorta of large vessel giant cell arteritis[J]. Front Immunol, 2019, 10: 83.
doi: 10.3389/fimmu.2019.00083 URL |
[26] |
Saadoun D, Garrido M, Comarmond C, et al. Th1 and Th17 cytokines drive inflammation in Takayasu arteritis.[J]. Arthritis Rheumatol, 2015, 67(5): 1353-1360.
doi: 10.1002/art.39037 URL |
[27] |
Mutoh T, Shirai T, Ishii T, et al. Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis[J]. Nat Commun, 2020, 11(1): 1253.
doi: 10.1038/s41467-020-15088-0 URL |
[28] | Alibaz-Oner F, Yentür SP, Saruhan-Direskeneli G, et al. Serum cytokine profiles in Takayasu’s arteritis: search for biomarkers[J]. Clin Exp Rheumatol, 2015, 33(2 Suppl 89): 32-35. |
[29] |
Savioli B, Abdulahad WH, Brouwer E, et al. Are cytokines and chemokines suitable biomarkers for Takayasu arteritis?[J]. Autoimmun Rev, 2017, 16(10): 1071-1078.
doi: S1568-9972(17)30206-9 pmid: 28778711 |
[30] |
Park MC, Lee SW, Park YB, et al. Serum cytokine profiles and their correlations with disease activity in Takayasu’s arteritis[J]. Rheumatology (Oxford), 2006, 45(5): 545-548.
doi: 10.1093/rheumatology/kei266 URL |
[31] |
Li J, Wang Y, Wang Y, et al. Association between acute phase reactants, interleukin-6, tumor necrosis factor-α, and disease activity in Takayasu’s arteritis patients[J]. Arthritis Res Ther, 2020, 22(1): 285.
doi: 10.1186/s13075-020-02365-y URL |
[32] |
Dhawan V, Mahajan N, Jain S. Role of C-C chemokines in Takayasu’s arteritis disease[J]. Int J Cardiol, 2006, 112(1): 105-111.
pmid: 16647147 |
[33] | Wu G, Mahajan N, Dhawan V. Acknowledged signatures of matrix metalloproteinases in Takayasu’s arteritis[J]. Biomed Res Int, 2014, 2014: 827105. |
[34] |
Mahajan N, Dhawan V, Malik S, et al. Implication of oxidative stress and its correlation with activity of matrix metalloproteinases in patients with Takayasu’s arteritis disease[J]. Int J Cardiol, 2010, 145(2): 286-288.
doi: S0167-5273(09)01518-6 pmid: 19913312 |
[35] |
Matsuyama A, Sakai N, Ishigami M, et al. Matrix metalloproteinases as novel disease markers in Takayasu arteritis[J]. Circulation, 2003, 108(12): 1469-1473.
doi: 10.1161/01.CIR.0000090689.69973.B1 pmid: 12952836 |
[36] |
Régnier P, Le Joncour A, Maciejewski-Duval A, et al. Targeting JAK/STAT pathway in Takayasu’s arteritis[J]. Ann Rheum Dis, 2020, 79(7): 951-959.
doi: 10.1136/annrheumdis-2019-216900 pmid: 32213496 |
[37] |
Watanabe R, Berry GJ, Liang DH, et al. Cellular signaling pathways in medium and large vessel vasculitis[J]. Front Immunol, 2020, 11: 587089.
doi: 10.3389/fimmu.2020.587089 URL |
[38] |
Maciejewski-Duval A, Comarmond C, Leroyer A, et al. mTOR pathway activation in large vessel vasculitis[J]. J Autoimmun, 2018, 94: 99-109.
doi: S0896-8411(18)30228-2 pmid: 30061014 |
[39] |
Bursi R, Cafaro G, Perricone C, et al. Contribution of Janus-kinase/signal transduction activator of transcription pathway in the pathogenesis of vasculitis[J]. Front Pharmacol, 2021, 12: 635663.
doi: 10.3389/fphar.2021.635663 URL |
[40] |
Zhang H, Watanabe R, Berry GJ, et al. Inhibition of JAK-STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis[J]. Circulation, 2018, 137(18): 1934-1948.
doi: 10.1161/CIRCULATIONAHA.117.030423 pmid: 29254929 |
[41] |
Régnier P, Le Joncour A, Maciejewski-Duval A, et al. Targeting JAK/STAT pathway in Takayasu’s arteritis[J]. Ann Rheum Dis, 2020, 79(7): 951-959.
doi: 10.1136/annrheumdis-2019-216900 pmid: 32213496 |
[42] |
Hadjadj J, Canaud G, Mirault T, et al. mTOR pathway is activated in endothelial cells from patients with Takayasu arteritis and is modulated by serum immunoglobulin G[J]. Rheumatology (Oxford), 2018, 57(6): 1011-1020.
doi: 10.1093/rheumatology/key017 pmid: 29506143 |
[43] |
Ishihara T, Haraguchi G, Kamiishi T, et al. Sensitive assessment of activity of Takayasu’s arteritis by pentraxin 3, a new biomarker[J]. J Am Coll Cardiol, 2011, 57(16): 1712-1713.
doi: 10.1016/j.jacc.2010.10.058 pmid: 21492771 |
[44] |
Matsuyama A, Sakai N, Ishigami M, et al. Matrix metalloproteinases as novel disease markers in Takayasu arteritis[J]. Circulation, 2003, 108(12): 1469-1473.
doi: 10.1161/01.CIR.0000090689.69973.B1 pmid: 12952836 |
[45] |
Park MC, Lee SW, Park YB, et al. Serum cytokine profiles and their correlations with disease activity in Takayasu’s arteritis[J]. Rheumatology (Oxford), 2006, 45(5): 545-548.
doi: 10.1093/rheumatology/kei266 URL |
[46] | Maz M, Chung SA, Abril A, et al. 2021 American College of Rheumatology/Vasculitis Foundation Guideline for the management of giant cell arteritis and takayasu arteritis[J]. Arthritis Care Res (Hoboken), 2021, 73(8): 1349-1365. |
[47] | Kenar G, Karaman S, Çetin P, et al. Imaging is the major determinant in the assessment of disease activity in Takayasu’s arteritis[J]. Clin Exp Rheumatol, 2020, 38 Suppl 124(2):55-60. |
[48] |
Ma LY, Li CL, Ma LL, et al. Value of contrast-enhanced ultrasonography of the carotid artery for evaluating disease activity in Takayasu arteritis[J]. Arthritis Res Ther, 2019, 21(1): 24.
doi: 10.1186/s13075-019-1813-2 URL |
[49] | Sun Y, Huang Q, Jiang L. Radiology and biomarkers in assessing disease activity in Takayasu arteritis[J]. Int J Rheum Dis, 2019, 22 Suppl 1: 53-59. |
[50] | Padoan R, Crimì F, Felicetti M, et al. Fully integrated 18F-FDG PET/MR in large vessel vasculitis[J]. Q J Nucl Med Mol Imaging, 2019.[Epub ahead of print]. |
[51] |
Ishikawa K. Diagnostic approach and proposed criteria for the clinical diagnosis of Takayasu’s arteriopathy[J]. J Am Coll Cardiol, 1988, 12(4): 964-972.
pmid: 2901440 |
[52] |
Sharma BK, Jain S, Suri S, et al. Diagnostic criteria for Takayasu arteritis[J]. Int J Cardiol, 1996, 54 Suppl: S141-S147.
doi: 10.1016/s0167-5273(96)88783-3 pmid: 9119516 |
[53] |
Arend WP, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis[J]. Arthritis Rheum, 1990, 33(8): 1129-1134.
doi: 10.1002/art.1780330811 URL |
[54] | Peter Grayson, Raashid Luqmani. ACR convergence 2021. oral presentation at 9th Nov. |
[55] |
Comarmond C, Biard L, Lambert M, et al. Long-term outcomes and prognostic factors of complications in Takayasu arteritis[J]. Circulation, 2017, 136(12): 1114-1122.
doi: 10.1161/CIRCULATIONAHA.116.027094 pmid: 28701469 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||