Journal of Internal Medicine Concepts & Practice ›› 2024, Vol. 19 ›› Issue (03): 201-206.doi: 10.16138/j.1673-6087.2024.03.10
• Review • Previous Articles Next Articles
LIU Wenhui1, WU Tao1(), ZHANG Xi2
Received:
2023-10-26
Online:
2024-06-28
Published:
2024-09-09
CLC Number:
LIU Wenhui, WU Tao, ZHANG Xi. Progress in treatment of adult acute lymphoblastic leukemia[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(03): 201-206.
[1] | 中华医学会血液学分会实验诊断学组. 急性淋巴细胞白血病微小残留病检测与临床解读中国专家共识(2023年版)[J]. 中华血液学杂志, 2023, 44(4):267-275. |
[2] | 中国抗癌协会血液肿瘤专业委员会, 中华医学会血液学分会白血病淋巴瘤学组. 中国成人急性淋巴细胞白血病诊断与治疗指南(2021年版)[J]. 中华血液学杂志, 2021, 42(9):705-716. |
[3] | 徐婷婷, 王卫敏, 付国美, 等. 成人急性淋巴细胞白血病患者的临床特点与疗效分析[J]. 中国实验血液学杂志, 2020, 28(1):68-75. |
[4] | Saleh K, Fernandez A, Pasquier F. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia in adults[J]. Cancers (Basel), 2022, 14(7):1805. |
[5] |
Pfeifer H, Cazzaniga G, van der Velden VHJ, et al. Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1[J]. Leukemia, 2019, 33(8):1910-1922.
doi: 10.1038/s41375-019-0413-0 pmid: 30858550 |
[6] |
Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study[J]. Lancet Haematol, 2018, 5(12):e618-e627.
doi: 10.1016/S2352-3026(18)30176-5 pmid: 30501869 |
[7] |
Chiaretti S, Ansuinelli M, Vitale A, et al. A multicenter total therapy strategy for de novo adult Philadelphia chromosome positive acute lymphoblastic leukemia patients[J]. Haematologica, 2021, 106(7):1828-1838.
doi: 10.3324/haematol.2020.260935 pmid: 33538150 |
[8] |
Wieduwilt MJ, Yin J, Wetzler M, et al. Dasatinib and dexamethasone followed by hematopoietic cell transplantation for adults with Ph-positive ALL[J]. Blood Adv, 2021, 5(22):4691-4700.
doi: 10.1182/bloodadvances.2021004813 pmid: 34492682 |
[9] | Sugiura I, Doki N, Hata T, et al. Dasatinib-based 2-step induction for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia[J]. Blood Adv, 2022, 6(2):624-636. |
[10] | Martinelli G, Papayannidis C, Piciocchi A, et al. INCB84344-201: ponatinib and steroids in frontline therapy for unfit patients with Ph+ acute lymphoblastic leukemia[J]. Blood Adv, 2022, 6(6):1742-1753. |
[11] | Foà R, Bassan R, Vitale A, et al. Dasatinib-blinatumomab for Ph-positive acute lymphoblastic leukemia in adults[J]. N Engl J Med, 2020, 383(17):1613-1623. |
[12] | Jabbour E, Short NJ, Jain N, et al. Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial[J]. Lancet Haematol, 2023, 10(1):e24-e34. |
[13] |
Jain N, Maiti A, Ravandi F, et al. Inotuzumab ozogamicin with bosutinib for relapsed or refractory Philadelphia chromosome positive acute lymphoblastic leukemia or lymphoid blast phase of chronic myeloid leukemia[J]. Am J Hematol, 2021, 96(8):1000-1007.
doi: 10.1002/ajh.26238 pmid: 33991360 |
[14] | Shah BD, Ghobadi A, Oluwole OO, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia[J]. Lancet, 2021, 398(10299):491-502. |
[15] | Gu B, Shi BY, Zhang X, et al. Allogeneic haematopoietic stem cell transplantation improves outcome of adults with relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia entering remission following CD19 chimeric antigen receptor T cells[J]. Bone Marrow Transplant, 2021, 56(1):91-100. |
[16] | Massimino M, Vigneri P, Stella S, et al. Combined inhibition of Bcl2 and Bcr-Abl1 exercises anti-leukemia activity but does not eradicate the primitive leukemic cells[J]. J Clin Med, 2021, 10(23):5606. |
[17] |
Short NJ, Konopleva M, Kadia T, et al. An effective chemotherapy-free regimen of ponatinib plus venetoclax for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia[J]. Am J Hematol, 2021, 96(7):E229-E232.
doi: 10.1002/ajh.26175 pmid: 33780038 |
[18] | Wang H, Yang C, Shi T, et al. Venetoclax-ponatinib for T315I/compound-mutated Ph+ acute lymphoblastic leukemia[J]. Am J Hematol, 2021, 96(7):E229-E232. |
[19] | Brown PA, Shah B, Advani A, et al. Acute lymphoblastic leukemia, version 2.2021, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2021, 19(9):1079-1109. |
[20] |
Jain N, Roberts KG, Jabbour E, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults[J]. Blood, 2017, 129(5):572-581.
doi: 10.1182/blood-2016-07-726588 pmid: 27919910 |
[21] |
Roberts KG, Gu Z, Payne-Turner D, et al. High frequency and poor outcome of philadelphia chromosome-like acute lymphoblastic leukemia in adults[J]. J Clin Oncol, 2017, 35(4):394-401.
doi: 10.1200/JCO.2016.69.0073 pmid: 27870571 |
[22] | Samra B, Jabbour E, Ravandi F, et al. Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions[J]. J Hematol Oncol, 2020, 13(1):70. |
[23] |
Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome-like acute lymphoblastic leukemia[J]. Blood, 2017, 130(19):2064-2072.
doi: 10.1182/blood-2017-06-743252 pmid: 28972016 |
[24] | Kim SK, Knight DA, Jones LR, et al. JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias[J]. Genes Dev, 2018, 32(11-12):849-864. |
[25] | 梁爱斌, 李萍. 成人急性淋巴细胞白血病诊断与治疗中国指南2021年版解读(Ph阴性,非复发难治部分)[J]. 临床血液学杂志, 2022, 35(3):165-167. |
[26] | Kopmar NE, Cassaday RD. How I prevent and treat central nervous system disease in adults with acute lymphoblastic leukemia[J]. Blood, 2023, 141(12):1379-1388. |
[27] | Kruse A, Abdel-Azim N, Kim HN, et al. Minimal residual disease detection in acute lymphoblastic leukemia[J]. Int J Mol Sci, 2020, 21(3):1054. |
[28] |
Gökbuget N, Dombret H, Giebel S, et al. Minimal residual disease level predicts outcome in adults with Ph-negative B-precursor acute lymphoblastic leukemia[J]. Hematology, 2019, 24(1):337-348.
doi: 10.1080/16078454.2019.1567654 pmid: 30757960 |
[29] | Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia[J]. N Engl J Med, 2017, 376(9):836-847. |
[30] |
Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia[J]. Cancer, 2019, 125(14):2474-2487.
doi: 10.1002/cncr.32116 pmid: 30920645 |
[31] | Sasaki K, Kantarjian H, Jabbour E, et al. Sequential combination of low-intensity chemotherapy (mini-hyper-CVD) plus inotuzumab ozogamicin with or without blinatumomab in patients with relapsed/refractory Philadelphia chromosome-negative acute lymphoblastic leukemia (ALL)[J]. Blood, 2018, 132 Suppl: 553. |
[32] | Advani AS, Moseley A, Liedtke M, et al. SWOG 1312 final results: a phase 1 trial of inotuzumab in combination with CVP (cyclosphosphamide, vincristine, prednisone) for relapsed/refractory CD22+ acute leukemia[J]. Blood, 2019, 134 Suppl: 227. |
[33] | Richard-Carpentier G, Kantarjian HM, Short NJ, et al. Updated results from the phase Ⅱ study of hyper-CVAD in sequential combination with blinatumomab in newly diagnosed adults with B-cell acute lymphoblastic leukemia (ALL)[J]. Blood, 2019, 134, 3807. |
[34] | Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5):439-448. |
[35] | Jiang H, Li C, Yin P, et al. Anti-CD19 chimeric antigen receptor-modified T-cell therapy bridging to allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia[J]. Am J Hematol, 2019, 94(10):1113-1122. |
[36] | Bardelli V, Arniani S, Pierini V, et al. T-cell acute lymphoblastic leukemia: biomarkers and their clinical usefulness[J]. Genes (Basel), 2021, 12(8):1118. |
[37] |
Jain N, Lamb AV, O'Brien S, et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype[J]. Blood, 2016, 127(15): 1863-1869.
doi: 10.1182/blood-2015-08-661702 pmid: 26747249 |
[38] | La Starza R, Cambò B, Pierini A, et al. Venetoclax and bortezomib in relapsed/refractory early T-cell precursor acute lymphoblastic leukemia[J]. JCO Precis Oncol, 2019, 3: PO.19.00172. |
[39] |
Zhang X, Li J, Jin J, et al. Relapsed/refractory early T-cell precursor acute lymphoblastic leukemia was salvaged by venetoclax plus HAG regimen[J]. Ann Hematol, 2020, 99(2):395-397.
doi: 10.1007/s00277-019-03902-9 pmid: 31879788 |
[40] | Arora S, Vachhani P, Bachiashvili K, et al. Venetoclax with chemotherapy in relapse/refractory early T-cell precursor acute lymphoblastic leukemia[J]. Leuk Lymphoma, 2021, 62(9):2292-2294. |
[41] | Kong J, Chen N, Li M, et al. Venetoclax and decitabine in refractory TP53-mutated early T-cell precursor acute lymphoblastic leukemia[J]. Ann Hematol, 2022, 101(3):697-699. |
[42] |
Richard-Carpentier G, Jabbour E, Short NJ, et al. Clinical experience with venetoclax combined with chemotherapy for relapsed or refractory T-cell acute lymphoblastic leukemia[J]. Clin Lymphoma Myeloma Leuk, 2020, 20(4):212-218.
doi: S2152-2650(19)31995-0 pmid: 32035785 |
[43] | Khogeer H, Rahman H, Jain N, et al. Early T precursor acute lymphoblastic leukaemia/lymphoma shows differential immunophenotypic characteristics including frequent CD33 expression and in vitro response to targeted CD33 therapy[J]. Br J Haematol, 2019, 186(4):538-548. |
[44] |
Bride KL, Vincent TL, Im SY, et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia[J]. Blood, 2018, 131(9):995-999.
doi: 10.1182/blood-2017-07-794214 pmid: 29305553 |
[45] | Mirgh S, Ahmed R, Agrawal N, et al. Will daratumumab be the next game changer in early thymic precursor-acute lymphoblastic leukaemia?[J]. Br J Haematol, 2019, 187(2):e33-e35. |
[46] | Sin CF, Man PM. Early T-cell precursor acute lymphoblastic leukemia: diagnosis, updates in molecular pathogenesis, management, and novel therapies[J]. Front Oncol, 2021, 11:750789. |
[47] |
Png YT, Vinanica N, Kamiya T, et al. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies[J]. Blood Adv, 2017, 1(25):2348-2360.
doi: 10.1182/bloodadvances.2017009928 pmid: 29296885 |
[48] |
Mamonkin M, Rouce RH, Tashiro H, et al. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies[J]. Blood, 2015, 126(8):983-992.
doi: 10.1182/blood-2015-02-629527 pmid: 26056165 |
[49] |
Abaza Y, M Kantarjian H, Faderl S, et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukemia and T-lymphoblastic lymphoma[J]. Am J Hematol, 2018, 93(1):91-99.
doi: 10.1002/ajh.24947 pmid: 29047158 |
[1] | WANG Yiyang, LÜ Liangjing. Potential biomarkers for prediction of the efficacy and safety of CAR T cell treatment in systemic lupus erythematosus [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(03): 263-269. |
[2] | ZHANG Tianshuai, ZHOU Leqi, YU Guanyu, ZHANG Wei. Current status and prospect of CAR-T cell immunotherapy for colorectal cancer [J]. Journal of Surgery Concepts & Practice, 2023, 28(05): 483-487. |
[3] | HUANG Lei, YE Chenjing, WU Chao, XU Wenbin, YU Qing, LI Junmin, YAN Hua. Clinical observation of the combination therapy of azacitidine and venetoclax in newly diagnosed, elderly patients with acute myeloid leukemia [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(03): 178-182. |
[4] | . [J]. Journal of Internal Medicine Concepts & Practice, 2019, 14(06): 355-360. |
[5] | . [J]. Journal of Internal Medicine Concepts & Practice, 2013, 8(03): 176-181. |
[6] | . [J]. Journal of Diagnostics Concepts & Practice, 2012, 11(02): 141-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||