Journal of Internal Medicine Concepts & Practice ›› 2024, Vol. 19 ›› Issue (04): 236-242.doi: 10.16138/j.1673-6087.2024.04.04
• Original article • Previous Articles Next Articles
SHENG Zhaoqing, LIU Xiaohong()
Received:
2024-01-22
Online:
2024-08-28
Published:
2024-11-11
CLC Number:
SHENG Zhaoqing, LIU Xiaohong. Screening and pathway analysis of autophagy-related genes in Alzheimer disease[J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(04): 236-242.
Table 1
Differentially expressed ARG
基因 | log2 FC | FDR | 上调/下调 |
---|---|---|---|
S100A8 | 0.734 430 653 | 1.294 75E-41 | 上调 |
S100A9 | 0.631 580 392 | 2.997 15E-41 | 上调 |
GFAP | 0.609 292 049 | 4.453 38E-55 | 上调 |
BAG3 | 0.446 585 26 | 5.753 08E-48 | 上调 |
SPP1 | 0.419 081 46 | 2.439 46E-40 | 上调 |
DDIT4 | 0.387 251 516 | 5.005 39E-49 | 上调 |
CDKN1A | 0.368 832 806 | 2.884 3E-44 | 上调 |
NFKBIA | 0.363 802 97 | 8.647 81E-75 | 上调 |
IL6 | 0.359 681 502 | 3.796 82E-17 | 上调 |
CCL2 | 0.345 877 034 | 7.361 13E-31 | 上调 |
GJA4 | 0.334 011 564 | 1.492 26E-45 | 上调 |
TNFRSF10B | 0.309 289 337 | 2.784 55E-69 | 上调 |
PDK4 | 0.283 985 514 | 1.619 89E-26 | 上调 |
CEBPB | 0.282 784 748 | 4.097 13E-59 | 上调 |
CXCR4 | 0.274 577 193 | 4.684 29E-34 | 上调 |
TREM2 | 0.274 073 704 | 2.786 42E-35 | 上调 |
SERPINH1 | 0.270 492 92 | 3.114 4E-31 | 上调 |
CASP1 | 0.263 382 958 | 9.255 49E-51 | 上调 |
HMOX1 | 0.256 356 446 | 1.288 31E-36 | 上调 |
CASP4 | 0.253 136 162 | 1.349 79E-51 | 上调 |
IL10RA | 0.252 086 766 | 7.222 95E-48 | 上调 |
TRIM22 | 0.251 133 782 | 6.561 9E-55 | 上调 |
VAMP8 | 0.249 623 31 | 9.593 4E-50 | 上调 |
MYD88 | 0.249 228 915 | 1.156 73E-51 | 上调 |
LAMP2 | 0.247 986 568 | 4.413 14E-40 | 上调 |
KDR | 0.242 699 838 | 1.689 45E-17 | 上调 |
CYBB | 0.241 577 351 | 1.078 61E-28 | 上调 |
ITGB4 | 0.236 962 537 | 1.708 02E-47 | 上调 |
NFE2L2 | 0.231 527 954 | 2.941 17E-59 | 上调 |
MCL1 | 0.231 458 541 | 1.725 39E-52 | 上调 |
DCN | 0.228 229 134 | 2.220 71E-29 | 上调 |
RELA | 0.224 802 04 | 1.358 85E-59 | 上调 |
SLC1A5 | 0.223 657 939 | 4.543 77E-50 | 上调 |
ITPR3 | 0.221 584 092 | 1.796 88E-42 | 上调 |
TCIRG1 | 0.219 778 682 | 5.358 93E-53 | 上调 |
PLCE1 | 0.219 757 497 | 5.667 72E-65 | 上调 |
NFKBIZ | 0.217 692 335 | 1.087 39E-40 | 上调 |
MYC | 0.213 477 663 | 2.334 41E-36 | 上调 |
NDRG1 | 0.211 367 782 | 2.057 29E-33 | 上调 |
LGALS3 | 0.209 718 41 | 1.968 45E-29 | 上调 |
STAT3 | 0.206 894 233 | 1.137 87E-56 | 上调 |
DUSP4 | -0.499 845 019 | 1.766 41E-60 | 下调 |
CAMK4 | -0.494 161 901 | 2.063 21E-74 | 下调 |
BDNF | -0.477 357 958 | 5.418 81E-81 | 下调 |
PAK1 | -0.469 712 144 | 1.555 31E-70 | 下调 |
IGF1 | -0.392 947 702 | 1.648 13E-67 | 下调 |
TBC1D9 | -0.331 515 013 | 4.391 44E-54 | 下调 |
MAP2K1 | -0.279 448 405 | 2.363 26E-32 | 下调 |
PLK2 | -0.278 443 738 | 1.786 23E-46 | 下调 |
HSPA8 | -0.255 422 758 | 6.227 56E-28 | 下调 |
GABBR2 | -0.235 543 436 | 1.284 5E-48 | 下调 |
CAMKK2 | -0.235 461 651 | 1.826 4E-67 | 下调 |
PRNP | -0.234 526 608 | 7.010 57E-35 | 下调 |
RALB | -0.231 614 543 | 3.131 96E-43 | 下调 |
MAPK8 | -0.229 246 562 | 1.221 77E-29 | 下调 |
VDAC1 | -0.229 196 778 | 4.274 23E-51 | 下调 |
SNCA | -0.226 627 217 | 2.682 88E-54 | 下调 |
HIVEP2 | -0.225 398 91 | 2.151 41E-42 | 下调 |
KIAA1524 | -0.224 809 135 | 1.178 74E-36 | 下调 |
CDKN2D | -0.221 703 258 | 1.496 62E-79 | 下调 |
GABARAPL1 | -0.214 767 25 | 7.058 2E-60 | 下调 |
PIK3CB | -0.213 074 216 | 7.147 73E-27 | 下调 |
VDAC2 | -0.210 329 444 | 7.610 65E-52 | 下调 |
FBXL2 | -0.208 120 876 | 1.005 31E-49 | 下调 |
NRG3 | -0.205 871 654 | 1.082 04E-42 | 下调 |
TBC1D7 | -0.204 288 881 | 2.941 05E-43 | 下调 |
Table 2
Key genes and their MCC scores
基因 | 英文全称 | MCC评分 |
---|---|---|
IL-6 | interleukin 6 | 244 380 |
STAT3 | signal transducer and activator of transcription 3 | 244 225 |
NFKBIA | nuclear factor-kappaB inhibitor alpha | 213 723 |
MAPK8 | mitogen-activated protein kinase 8 | 184 714 |
CCL2 | CC chemokine ligand 2 | 169 968 |
MYC | myelocytomatosis viral oncogene homolog | 136 967 |
HMOX1 | heme oxygenase 1 | 108 768 |
RELA | v-rel reticuloendotheliosis viral oncogene homolog A (avian) | 107 766 |
CASP1 | caspase-1 | 106 712 |
NFE2L2 | nuclear factor erythroid2-like-2 | 90 721 |
[1] |
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease[J]. Lancet, 2021, 397(10284):1577-1590.
doi: 10.1016/S0140-6736(20)32205-4 pmid: 33667416 |
[2] | 王刚, 齐金蕾, 刘馨雅, 等. 中国阿尔茨海默病报告2024[J]. 诊断学理论与实践, 2024, 23(3):219-256. |
[3] |
Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1):27-42.
doi: 10.1016/j.cell.2007.12.018 pmid: 18191218 |
[4] |
Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice[J]. J Clin Invest, 2008, 118(6):2190-2199.
doi: 10.1172/JCI33585 pmid: 18497889 |
[5] | Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study[J]. J Neuropathol Exp Neurol, 2005, 64(2):113-122. |
[6] | Yu WH, Cuervo AM, Kumar A, et al. Macroautophagy-a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease[J]. J Cell Biol, 2005, 171(1):87-98. |
[7] |
Menzies FM, Fleming A, Caricasole A, et al. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities[J]. Neuron, 2017, 93(5):1015-1034.
doi: S0896-6273(17)30046-6 pmid: 28279350 |
[8] |
Nilsson P, Loganathan K, Sekiguchi M, et al. Aβ secretion and plaque formation depend on autophagy[J]. Cell Rep, 2013, 5(1):61-69.
doi: 10.1016/j.celrep.2013.08.042 pmid: 24095740 |
[9] | Uddin MS, Mamun AA, Labu ZK, et al. Autophagic dysfunction in Alzheimer’s disease: cellular and molecular mechanistic approaches to halt Alzheimer’s pathogenesis[J]. J Cell Physiol, 2019, 234(6):8094-8112. |
[10] |
Motta V, Soares F, Sun T, et al. NOD-like receptors: versatile cytosolic sentinels[J]. Physiol Rev, 2015, 95(1):149-178.
doi: 10.1152/physrev.00009.2014 pmid: 25540141 |
[11] |
Jounai N, Kobiyama K, Shiina M, et al. NLRP4 negatively regulates autophagic processes through an association with beclin1[J]. J Immunol, 2011, 186(3):1646-1655.
doi: 10.4049/jimmunol.1001654 pmid: 21209283 |
[12] |
Zhang Y, Sauler M, Shinn AS, et al. Endothelial PINK1 mediates the protective effects of NLRP3 deficiency during lethal oxidant injury[J]. J Immunol, 2014, 192(11):5296-5304.
doi: 10.4049/jimmunol.1400653 pmid: 24778451 |
[13] |
Wlodarska M, Thaiss CA, Nowarski R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion[J]. Cell, 2014, 156(5):1045-1059.
doi: 10.1016/j.cell.2014.01.026 pmid: 24581500 |
[14] | Chen Y, Zeng A, He S, et al. Autophagy-related genes in atherosclerosis[J]. J Healthc Eng, 2021,2021:6402206. |
[15] | Shao BZ, Han BZ, Zeng YX, et al. The roles of macrophage autophagy in atherosclerosis[J]. Acta Pharmacol Sin, 2016, 37(2):150-156. |
[16] | Menghini R, Casagrande V, Marino A, et al. MiR-216a: a link between endothelial dysfunction and autophagy[J]. Cell Death Dis, 2014, 5(1):e1029. |
[17] | Li H, Huang S, Wang S, et al. Targeting annexin A7 by a small molecule suppressed the activity of phosphatidylcholine-specific phospholipase C in vascular endothelial cells and inhibited atherosclerosis in apolipoprotein E⁻/⁻mice[J]. Cell Death Dis, 2013, 4(9):e806. |
[18] |
Roher AE, Esh C, Kokjohn TA, et al. Circle of willis atherosclerosis is a risk factor for sporadic Alzheimer’s disease[J]. Arterioscler Thromb Vasc Biol, 2003, 23(11):2055-2062.
doi: 10.1161/01.ATV.0000095973.42032.44 pmid: 14512367 |
[19] |
Roher AE, Tyas SL, Maarouf CL, et al. Intracranial atherosclerosis as a contributing factor to Alzheimer’s disease dementia[J]. Alzheimers Dement, 2011, 7(4):436-444.
doi: 10.1016/j.jalz.2010.08.228 pmid: 21388893 |
[20] |
Arvanitakis Z, Capuano AW, Leurgans SE, et al. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study[J]. Lancet Neurol, 2016, 15(9):934-943.
doi: S1474-4422(16)30029-1 pmid: 27312738 |
[21] | Liu L, Tao Z, Zheng LD, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes[J]. Cell Death Discov, 2016,2:16066. |
[22] | Wang S, Xia P, Huang G, et al. FoxO1-mediated autophagy is required for NK cell development and innate immunity[J]. Nat Commun, 2016,7:11023. |
[23] |
Baek SH, Kim KI. Epigenetic control of autophagy: nuclear events gain more attention[J]. Mol Cell, 2017, 65(5):781-785.
doi: S1097-2765(16)30870-X pmid: 28257699 |
[24] |
Hu F, Song D, Yan Y, et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation[J]. Nat Commun, 2021, 12(1):3651.
doi: 10.1038/s41467-021-23923-1 pmid: 34131122 |
[25] | Lyra E Silva NM, Gonçalves RA, Pascoal TA, et al. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease[J]. Transl Psychiatry, 2021, 11(1):251. |
[26] | 田密, 侯德仁, 邓炎尧, 等. STAT3与P-STAT3在转基因AD小鼠脑组织中的表达及意义[J]. 南方医科大学学报, 2013, 33(12):1778-1782. |
[27] |
You L, Wang Z, Li H, et al. The role of STAT3 in autophagy[J]. Autophagy, 2015, 11(5):729-739.
doi: 10.1080/15548627.2015.1017192 pmid: 25951043 |
[28] | Reichenbach N, Delekate A, Plescher M, et al. Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model[J]. EMBO Mol Med, 2019, 11(2):e9665. |
[29] | Choi M, Kim H, Yang EJ, et al. Inhibition of STAT3 phosphorylation attenuates impairments in learning and memory in 5XFAD mice, an animal model of Alzheimer’s disease[J]. J Pharmacol Sci, 2020, 143(4):290-299. |
[30] | Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers[J]. Biochem Soc Trans, 2013, 41(5):1103-1130. |
[31] |
Schmukler E, Michaelson DM, Pinkas-Kramarski R. The interplay between apolipoprotein E4 and the autophagic-endocytic-lysosomal axis[J]. Mol Neurobiol, 2018, 55(8):6863-6880.
doi: 10.1007/s12035-018-0892-4 pmid: 29353455 |
[1] | LI Dongdong, WANG Bin. The pathogenesis and therapeutic strategies for congenital melanocytic nevi [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2024, 20(2): 254-. |
[2] | Afsana Sheikh, Prashant Kesharwani, Waleed H. Almalki, Salem Salman Almujri, Linxin Dai, Zhe-Sheng Chen, Amirhossein Sahebkar, Fei Gao. Understanding the Novel Approach of Nanoferroptosis for Cancer Therapy [J]. Nano-Micro Letters, 2024, 16(1): 188-. |
[3] | ZHOU Yue, YE Meina, DAI Qiuying, et al. Identification of differentially expressed proteins of granulomatous mastitis and key cytokine validation [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2024, 20(1): 75-. |
[4] | WANG Zhuoxin, HUANG Xinyang, JIN Yixun, WANG Lifu. Bioinformatics analysis and identification of cuproptosis characteristic genes for acute pancreatitis by machine learning [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(04): 224-230. |
[5] | HE Yanjie, HE Meijuan, WANG Yun, ZHU Chunxue, HUANG Hanpeng. Pinocembrin alleviates BEAS-2B cell damage induced by chronic intermittent hypoxia through inhibiting autophagy [J]. Journal of Internal Medicine Concepts & Practice, 2024, 19(02): 115-120. |
[6] | ZHU Zhenggang. Clinical significance of combination of anti-angiogenesis, immune checkpoint inhibitors and chemotherapy in the neoadjuvant treatment of locally advanced gastric cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(02): 132-137. |
[7] | OU Dan, CAI Gang, CHEN Jiayi. Bioinformatics analysis for expression of RAD51AP1 in triple negative breast cancer with brain metastasis [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(02): 146-154. |
[8] | SHAO Xinlin, ZHU Xuemei, CAO Hua. Advances in research on the risk factors and pathogenesis of connective tissue disease-associated interstitial lung disease [J]. Journal of Diagnostics Concepts & Practice, 2024, 23(02): 202-209. |
[9] | LIU Jian, WANG Zhenxing, SUN Jiaming. Strategy and research advances of vascularization of tissue engineered skin [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2023, 19(6): 579-. |
[10] | HUANG Jin, HAN Wenqing, LI Xin, et al. In vivo and vitro phenotype identification of miR-148a-3p regulating angiogenesis [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2023, 19(6): 525-. |
[11] | JIA Xinyu, LI Facheng. Advances on autophagy mechanism in cell survival and regeneration after autologous fat grafting [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2023, 19(4): 420-. |
[12] | HU Doudou, XU Yong, JIA Wei. Curcumin-loaded nanofilm stabilize in vivo chondrogenesis of stem cellengineered cartilage using an encapsulation model [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2023, 19(4): 329-335. |
[13] |
ZHAO Jingjing, WU Di.
Research progress of signal pathways in soft palate development [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2023, 19(1): 75-. |
[14] | REN Shaozeng. The Textual Function of the English Double Predicate Clause—The Logogenesis and Instantial System [J]. Contemporary Foreign Languages Studies, 2023, 23(1): 41-59. |
[15] | ZHOU Haiming. Theoretical Interpretation of Ontogenesis in SFL: Connotation, Origins and Implications [J]. Contemporary Foreign Languages Studies, 2022, 22(5): 70-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||