Journal of Internal Medicine Concepts & Practice ›› 2022, Vol. 17 ›› Issue (01): 92-96.doi: 10.16138/j.1673-6087.2022.01.018
• Review article • Previous Articles Next Articles
Received:
2021-05-10
Online:
2022-02-28
Published:
2022-07-25
CLC Number:
[1] |
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810.
doi: 10.1001/jama.2016.0287 URL |
[2] |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211.
doi: 10.1016/S0140-6736(19)32989-7 URL |
[3] |
Dugar S, Choudhary C, Duggal A. Sepsis and septic shock: guideline-based management[J]. Cleve Clin J Med. 2020, 87(1): 53-64.
doi: 10.3949/ccjm.87a.18143 URL |
[4] | Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management[J]. BMJ, 2016, 353: 1585-1605. |
[5] |
Leslie M. Immunology. Stalling sepsis?[J]. Science, 2012, 337(6098): 1036.
doi: 10.1126/science.337.6098.1036 pmid: 22936753 |
[6] |
van der Poll T, van de Veerdonk FL, Scicluna BP, et al. The immunopathology of sepsis and potential therapeutic targets[J]. Nat Rev Immunol, 2017, 17(7): 407-420.
doi: 10.1038/nri.2017.36 pmid: 28436424 |
[7] |
Venet F, Monneret G. Advances in the understanding and treatment of sepsis-induced immunosuppression[J]. Nat Rev Nephrol, 2018, 14(2): 121-137.
doi: 10.1038/nrneph.2017.165 URL |
[8] |
Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome[J]. Immunol Rev, 2016, 274(1): 330-353.
doi: 10.1111/imr.12499 URL |
[9] |
Allison SJ. Sepsis: NET-induced coagulation induces organ damage in sepsis[J]. Nat Rev Nephrol, 2017, 13(3): 133.
doi: 10.1038/nrneph.2017.7 pmid: 28138127 |
[10] |
Mollnes TE, Huber-Lang M. Complement in sepsis-when science meets clinics[J]. FEBS Lett, 2020, 594(16): 2621-2632.
doi: 10.1002/1873-3468.13881 pmid: 32621378 |
[11] |
Zhang H, Zeng L, Xie M, et al. TMEM173 drives lethal coagulation in sepsis[J]. Cell Host Microbe, 2020, 27(4): 556-570.
doi: S1931-3128(20)30112-8 pmid: 32142632 |
[12] |
Xu S, Pan X, Mao L, et al. Phospho-Tyr705 of STAT3 is a therapeutic target for sepsis through regulating inflammation and coagulation[J]. Cell Commun Signal, 2020, 18(1): 104.
doi: 10.1186/s12964-020-00603-z URL |
[13] |
Joffre J, Hellman J, Ince C, et al. Endothelial responses in sepsis[J]. Am J Respir Crit Care Med, 2020, 202(3): 361-370.
doi: 10.1164/rccm.201910-1911TR URL |
[14] |
Prauchner CA. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy[J]. Burns, 2017, 43(3): 471-485.
doi: S0305-4179(16)30400-4 pmid: 28034666 |
[15] | 吴玉娇, 张晶, 漆立军. 血必净注射液治疗脓毒症临床疗效和安全性的Meta分析[J]. 中华危重病急救医学, 2020, 32(6): 691-695. |
[16] | Li C, Wang P, Li M, et al. The current evidence for the treatment of sepsis with Xuebijing injection: bioactive constituents, findings of clinical studies and potential mechanisms[J]. J Ethnopharmacol, 2021, 265: 1-17. |
[17] | 邢燕, 程东良, 史长松. 参附注射液抑制HMGB1诱发的CD11B+细胞麻痹对严重脓毒症内皮的保护作用[J]. 中华危重病急救医学, 2020, 32(6): 696-701. |
[18] |
Zou M, Yang W, Niu L, et al. Polydatin attenuates mycoplasma gallisepticum (HS strain)-induced inflammation injury via inhibiting the TLR6/ MyD88/NF-κB pathway[J]. Microb Pathog, 2020, 149: 104552.
doi: 10.1016/j.micpath.2020.104552 URL |
[19] |
Fu Y, Jin Y, Shan A, et al. Polydatin protects bovine mammary epithelial cells against zearalenone-induced apoptosis by inhibiting oxidative responses and endoplasmic reticulum stress[J]. Toxins (Basel), 2021, 13(2): 121-138.
doi: 10.3390/toxins13020121 URL |
[20] | Kim JS, Jeong SK, Oh SJ, et al. The resveratrol analogue, HS-1793, enhances the effects of radiation therapy through the induction of anti-tumor immunity in mammary tumor growth[J]. Int J Oncol, 2020, 56(6): 1405-1416. |
[21] |
Marumo M, Ekawa K, Wakabayashi I. Resveratrol inhibits Ca2+ signals and aggregation of platelets[J]. Environ Health Prev Med, 2020, 25(1): 70.
doi: 10.1186/s12199-020-00905-1 URL |
[22] |
Giordo R, Zinellu A, Eid AH, et al. Therapeutic potential of resveratrol in COVID-19-associated hemostatic disorders[J]. Molecules, 2021, 26(4): 856.
doi: 10.3390/molecules26040856 URL |
[23] | van Polanen N, Zacharewicz E, de Ligt M, et al. Resveratrol-induced remodelling of myocellular lipid stores: a study in metabolically compromised humans[J]. Physiol Rep, 2021, 9(2): e14692. |
[24] |
Chen J, Liu Q, Wang Y, et al. Protective effects of resveratrol liposomes on mitochondria in substantia nigra cells of parkinsonized rats[J]. Ann Palliat Med, 2021, 10(3): 2458-2468.
doi: 10.21037/apm-19-426 URL |
[25] | 张云婷, 黄晓, 陈运中, 等. 虎杖主要化学成分及其生物合成机制研究进展[J]. 中国中药杂志, 2020, 45(18): 4364-4372. |
[26] | 刘慧文, 王国凯, 储宣宁, 等. 不同产地虎杖HPLC指纹图谱及6种成分含量测定[J]. 现代中药研究与实践, 2018, 32(3): 13-18. |
[27] |
Meng QH, Liu HB, Wang JB. Polydatin ameliorates renal ischemia/reperfusion injury by decreasing apoptosis and oxidative stress through activating sonic hedgehog signaling pathway[J]. Food Chem Toxicol, 2016, 96: 215-225.
doi: 10.1016/j.fct.2016.07.032 URL |
[28] |
Chen L, Lan Z, Lin Q, et al. Polydatin ameliorates renal injury by attenuating oxidative stress-related inflammatory responses in fructose-induced urate nephropathic mice[J]. Food Chem Toxicol, 2013, 52: 28-35.
doi: 10.1016/j.fct.2012.10.037 URL |
[29] |
O’Sullivan AW, Wang JH, Redmond HP. NF-κB 38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy[J]. J Surg Res, 2009, 152(1): 46-53.
doi: 10.1016/j.jss.2008.04.030 URL |
[30] |
Wang Y, Wang L, Gong Z. Regulation of acetylation in high mobility group protein B1 cytosol translocation[J]. DNA Cell Biol, 2019, 38(5): 491-499.
doi: 10.1089/dna.2018.4592 pmid: 30874449 |
[31] |
Sun R, Zhang Y, Lv Q, et al. Toll-like receptor 3 (TLR3) induces apoptosis via death receptors and mitochondria by up-regulating the transactivating p63 isoform alpha (TAP63alpha)[J]. J Biol Chem, 2011, 286(18): 15918-15928.
doi: 10.1074/jbc.M110.178798 URL |
[32] |
Denning NL, Aziz M, Gurien SD, et al. DAMPs and NETs in sepsis[J]. Front Immunol, 2019, 10: 2536.
doi: 10.3389/fimmu.2019.02536 URL |
[33] |
Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1[J]. Front Immunol, 2020, 11: 484.
doi: 10.3389/fimmu.2020.00484 URL |
[34] |
Wang B, Bellot GL, Iskandar K, et al. Resveratrol attenuates TLR-4 mediated inflammation and elicits therapeutic potential in models of sepsis[J]. Sci Rep, 2020, 10(1): 18837.
doi: 10.1038/s41598-020-74578-9 URL |
[35] |
Shang X, Lin K, Yu R, et al. Resveratrol protects the myocardium in sepsis by activating the phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and inhibiting the nuclear factor-κB (NF-κB) signaling pathway[J]. Med Sci Monit, 2019, 25: 9290-9298.
doi: 10.12659/MSM.918369 URL |
[36] |
Xu W, Lu Y, Yao J, et al. Novel role of resveratrol: suppression of high-mobility group protein box 1 nucleocytoplasmic translocation by the upregulation of sirtuin 1 in sepsis-induced liver injury[J]. Shock, 2014, 42(5): 440-447.
doi: 10.1097/SHK.0000000000000225 URL |
[37] |
Wen Q, Lau N, Weng H, et al. Chrysophanol exerts anti-inflammatory activity by targeting histone deacetylase 3 through the high mobility group protein 1-nuclear transcription factor-κB signaling pathway in vivo and in vitro[J]. Front Bioeng Biotechnol, 2020, 8: 623866.
doi: 10.3389/fbioe.2020.623866 URL |
[38] |
Qing J, Zhang Z, Novák P, et al. Mitochondrial metabolism in regulating macrophage polarization: an emerging regulator of metabolic inflammatory diseases[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(9): 917-926.
doi: 10.1093/abbs/gmaa081 URL |
[39] |
Saqib U, Sarkar S, Suk K, et al. Phytochemicals as modulators of M1-M2 macrophages in inflammation[J]. Oncotarget, 2018, 9(25): 17937-17950.
doi: 10.18632/oncotarget.24788 pmid: 29707159 |
[40] |
Ding Y, Liu P, Chen ZL, et al. Emodin attenuates lipopolysaccharide-induced acute liver injury via inhibiting the TLR4 signaling pathway in vitro and in vivo[J]. Front Pharmacol, 2018, 9: 962.
doi: 10.3389/fphar.2018.00962 pmid: 30186181 |
[41] | Mantzarlis K, Tsolaki V, Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies[J]. Oxid Med Cell Longev, 2017, 2017: 5985209. |
[42] |
Chen Y, Luan L, Wang C, et al. Dexmedetomidine protects against lipopolysaccharide-induced early acute kidney injury by inhibiting the iNOS/NO signaling pathway in rats[J]. Nitric Oxide, 2019, 85: 1-9.
doi: 10.1016/j.niox.2019.01.009 URL |
[43] |
Heemskerk S, Masereeuw R, Russel FG, et al. Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury[J]. Nat Rev Nephrol, 2009, 5(11): 629-640.
doi: 10.1038/nrneph.2009.155 pmid: 19786992 |
[44] |
Aydın S, Şahin TT, Bacanlı M, et al. Resveratrol protects sepsis-induced oxidative DNA damage in liver and kidney of rats[J]. Balkan Med J, 2016, 33(6): 594-601.
doi: 10.5152/balkanmedj.2016.15516 URL |
[45] |
Zhang HX, Duan GL, Wang CN, et al. Protective effect of resveratrol against endotoxemia-induced lung injury involves the reduction of oxidative/nitrative stress[J]. Pulm Pharmacol Ther, 2014, 27(2): 150-155.
doi: 10.1016/j.pupt.2013.07.007 URL |
[46] | 吴孟娇, 李晓会, 郑佳佳, 等. 虎杖苷对脓毒症致急性肾损伤小鼠的保护作用[J]. 中草药, 2011, 42(10): 2033-2036. |
[47] |
Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res, 2018, 1865(5): 721-733.
doi: 10.1016/j.bbamcr.2018.02.010 URL |
[48] |
Wang Y, Wang X, Zhang L, et al. Alleviation of acute lung injury in rats with sepsis by resveratrol via the phosphatidylinositol 3-kinase/nuclear factor-erythroid 2 related factor 2/heme oxygenase-1 (PI3K/Nrf2/HO-1) pathway[J]. Med Sci Monit, 2018, 24: 3604-3611.
doi: 10.12659/MSM.910245 URL |
[49] | Li XH, Gong X, Zhang L, et al. Protective effects of polydatin on septic lung injury in mice via upregulation of HO-1[J]. Mediators Inflamm, 2013, 2013: 354087. |
[50] |
Wu J, Deng Z, Sun M, et al. Polydatin protects against lipopolysaccharide-induced endothelial barrier disruption via SIRT3 activation[J]. Lab Invest, 2020, 100(4): 643-656.
doi: 10.1038/s41374-019-0332-8 URL |
[51] |
Luissint AC, Parkos CA, Nusrat A. Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair[J]. Gastroenterology, 2016, 151(4): 616-632.
doi: 10.1053/j.gastro.2016.07.008 URL |
[52] |
Chen L, Li L, Han Y, et al. Tong-fu-li-fei decoction exerts a protective effect on intestinal barrier of sepsis in rats through upregulating ZO-1/occludin/claudin-1 expression[J]. J Pharmacol Sci, 2020, 143(2): 89-96.
doi: S1347-8613(20)30024-4 pmid: 32173265 |
[53] | Li Y, Guo R, Zhang M, et al. Protective effect of emodin on intestinal epithelial tight junction barrier integrity in rats with sepsis induced by cecal ligation and puncture[J]. Exp Ther Med, 2020, 19(6): 3521-3530. |
[54] |
Brilha S, Ong CWM, Weksler B, et al. Matrix metalloproteinase-9 activity and a downregulated hedgehog pathway impair blood-brain barrier function in an in vitro model of CNS tuberculosis[J]. Sci Rep, 2017, 7(1): 16031.
doi: 10.1038/s41598-017-16250-3 pmid: 29167512 |
[55] | 刘新强, 温妙云, 韩永丽, 等. 白藜芦醇改善脓毒症脑病大鼠认知功能障碍的机制研究[J]. 中华危重病急救医学, 2020, 32(10): 1189-1193. |
[56] |
Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(4): 759-773.
doi: 10.1016/j.bbadis.2018.10.011 URL |
[57] |
Liu X, Shao K, Sun T. SIRT1 regulates the human alveolar epithelial A549 cell apoptosis induced by Pseudomonas aeruginosa lipopolysaccharide[J]. Cell Physiol Biochem, 2013, 31(1): 92-101.
doi: 10.1159/000343352 URL |
[58] |
An R, Zhao L, Xu J, et al. Resveratrol alleviates sepsis-induced myocardial injury in rats by suppressing neutrophil accumulation, the induction of TNF-α and myocardial apoptosis via activation of Sirt1[J]. Mol Med Rep, 2016, 14(6): 5297-5303.
doi: 10.3892/mmr.2016.5861 URL |
[1] | ZHENG Yuzhen, ZHENG Yanjun, ZHOU Yi, QI Xing, CHEN Weiwei, SHI Wen, ZHOU Weijun, YANG Zhitao, CHEN Ying, MAO Enqiang, CHEN Erzhen. The clinical retrospective analysis of 674 hospitalized patients diagnosed with sepsis in a general hospital [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(04): 278-282. |
[2] | CHEN Min, CHE Zaiqian, CHEN Ying, MA Li, ZHAO Bing, ZHOU Weijun, MAO Enqiang, CHEN Erzhen. Clinical study of leukocyte-to-platelet ratio in early evaluating prognosis of sepsis [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(03): 208-213. |
[3] | WANG Hu, ZHANG Jiaojiao, SUN Junnan, WANG Hairong. Evaluating value of interleukin-6 combined with CD4+ T cell percentage on prognosis in patients with sepsis [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(06): 404-408. |
[4] | ZHU Yingying, ZHANG Jiaojiao, SUN Junnan, WANG Hairong. Effect of chloroquine on type Ⅱ alveolar cell injury caused by lipopolysaccharide [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(03): 197-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||