[1] |
Tokuda H, Sakai F, Yamada H, et al. Clinical and radiological features of Pneumocystis pneumonia in patients with rheumatoid arthritis, in comparison with methotrexate Pneumonitis and Pneumocystis pneumonia in acquired immunodeficiency syndrome[J]. Intern Med, 2008, 47(10):915-923.
doi: 10.2169/internalmedicine.47.0702
URL
|
[2] |
Thomas CF Jr, Limper AH. Pneumocystis pneumonia[J]. N Engl J Med, 2004, 350(24):2487-2498.
doi: 10.1056/NEJMra032588
URL
|
[3] |
Maschmeyer G, Helweg-Larsen J, Pagano L, et al. ECIL guidelines for treatment of Pneumocystis jirovecii pneumonia in non-HIV-infected haematology patients[J]. J Antimicrob Chemother, 2016, 71(9):2405-2413.
doi: 10.1093/jac/dkw158
pmid: 27550993
|
[4] |
Fishman JA, Gans H. Pneumocystis jiroveci in solid organ transplantation[J]. Clin Transplant, 2019, 33(9):e13587.
|
[5] |
Chang HM, Tsai HC, Lee SS, et al. High daily doses of trimethoprim/sulfamethoxazole are an independent risk factor for adverse reactions in patients with Pneumocystis pneumonia and AIDS[J]. J Chin Med Assoc, 2016, 79(6):314-319.
doi: 10.1016/j.jcma.2016.01.007
URL
|
[6] |
Hughes WT, Feldman S, Chaudhary SC, et al. Comparison of pentamidine isethionate and trimethoprim-sulfamethoxazole in the treatment of Pneumocystis carinii pneumonia[J]. J Pediatr, 1978, 92(2):285-291.
doi: 10.1016/S0022-3476(78)80028-6
URL
|
[7] |
Chin TW, Vandenbroucke A, Fong IW. Pharmacokinetics of trimethoprim-sulfamethoxazole in critically ill and non-critically ill AIDS patients[J]. Antimicrob Agents Chemother, 1995, 39(1):28-33.
doi: 10.1128/AAC.39.1.28
pmid: 7695325
|
[8] |
Kim T, Hong HL, Lee YM, et al. Is caspofungin really an effective treatment for Pneumocystis jirovecii pneumonia in immunocompromised patients without human immunodeficiency virus infection?[J]. Scand J Infect Dis, 2013, 45(6):484-488.
doi: 10.3109/00365548.2012.760842
URL
|
[9] |
潘欢妍, 祁慧, 梁培, 等. 重症耶氏肺孢子菌肺炎患者复方磺胺甲噁唑血药浓度监测的临床研究[J]. 中南药学, 2023, 21(6):1653-1658.
|
[10] |
Kosaka M, Ushiki A, Ikuyama Y, et al. A four-center retrospective study of the efficacy and toxicity of low-dose trimethoprim-sulfamethoxazole for the treatment of Pneumocystis pneumonia in patients without HIV infection[J]. Antimicrob Agents Chemother, 2017, 61(12):e01173-e01217.
|
[11] |
Nakashima K, Aoshima M, Nakashita T, et al. Low-dose trimethoprim-sulfamethoxazole treatment for Pneumocystis pneumonia in non-human immunodeficiency virus-infected immunocompromised patients[J]. J Microbiol Immunol Infect, 2018, 51(6):810-820.
doi: S1684-1182(17)30147-0
pmid: 28779879
|
[12] |
Ohmura SI, Naniwa T, Tamechika SY, et al. Effectiveness and safety of lower dose sulfamethoxazole/trimethoprim therapy for Pneumocystis jirovecii pneumonia in patients with systemic rheumatic diseases[J]. J Infect Chemother, 2019, 25(4):253-261.
doi: 10.1016/j.jiac.2018.11.014
URL
|
[13] |
Chin TW, Vandenbroucke A, Fong IW. Pharmacokinetics of trimethoprim-sulfamethoxazole in critically ill and non-critically ill AIDS patients[J]. Antimicrob Agents Chemother, 1995, 39(1):28-33.
doi: 10.1128/AAC.39.1.28
pmid: 7695325
|
[14] |
Hall RG Nd, Pasipanodya JG, Meek C, et al. Fractal geometry-based decrease in trimethoprim-sulfamethoxazole concentrations in overweight and obese people[J]. CPT Pharmacometrics Syst Pharmacol, 2016, 5(12):674-681.
doi: 10.1002/psp4.v5.12
URL
|
[15] |
Reeves DS, Wilkinson PJ. The pharmacokinetics of trimethoprim and trimethoprim/sulphonamide combinations, including penetration into body tissues[J]. Infection, 1979, 7 Suppl 4:S330-S341.
|
[16] |
Kagaya H, Miura M, Niioka T, et al. Influence of NAT2 polymorphisms on sulfamethoxazole pharmacokinetics in renal transplant recipients[J]. Antimicrob Agents Chemother, 2012, 56(2):825-829.
doi: 10.1128/AAC.05037-11
pmid: 22106207
|
[17] |
Kavanagh ON. Alkalising agents in urinary tract infections: theoretical contraindications, interactions and synergy[J]. Ther Adv Drug Saf, 2022, 13:20420986221080794.
|