Journal of Internal Medicine Concepts & Practice ›› 2025, Vol. 20 ›› Issue (05): 352-358.doi: 10.16138/j.1673-6087.2025.05.01
Previous Articles Next Articles
Received:2025-08-28
Online:2025-12-10
Published:2025-12-26
Contact:
BAI Yongrui
E-mail:huangrenhua_hrh@126.com;baiyongruiz@163.com
CLC Number:
HUANG Renhua, BAI Yongrui. Advances in diagnosis and treatment of radiation-induced brain injury[J]. Journal of Internal Medicine Concepts & Practice, 2025, 20(05): 352-358.
| [1] |
Abdel-Wahab M, Gondhowiardjo SS, Rosa AA, et al. Global radiotherapy: current status and future directions-white paper[J]. JCO Glob Oncol, 2021, 7: 827-842.
doi: 10.7150/ijms.3635 |
| [2] |
Obrador E, Moreno-Murciano P, Oriol-Caballo M, et al. Glioblastoma therapy: past, present and future[J]. Int J Mol Sci, 2024, 25(5): 2529.
doi: 10.3390/ijms25052529 |
| [3] |
van den Bent MJ, Tesileanu CMS, Wick W, et al. Adjuvant and concurrent temozolomide for 1p/19q non-codeleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study[J]. Lancet Oncol, 2021, 22(6): 813-823.
doi: 10.1016/S1470-2045(21)00090-5 |
| [4] |
Zhu Y, Cheng J, Li Y, et al. Progression of cognitive dysfunction in NPC survivors with radiation - induced brain necrosis: a prospective cohort[J]. Radiother Oncol, 2024, 190: 110033.
doi: 10.1016/j.radonc.2023.110033 |
| [5] |
Pan J, Liang J, Li Y, et al. Composite quantitative structural magnetic resonance imaging-based risk scoring model for predicting radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma: a novel risk stratification model[J]. Radiat Oncol, 2025, 20(1): 160.
doi: 10.1002/cam4.1291 |
| [6] |
Rübe CE, Raid S, Palm J, et al. Radiation-induced brain injury: age dependency of neurocognitive dysfunction following radiotherapy[J]. Cancers (Basel), 2023, 15(11): 2999.
doi: 10.3390/cancers15112999 |
| [7] |
Pospisil P, Hynkova L, Hnidakova L, et al. Unilateral hippocampal sparing during whole brain radiotherapy for multiple brain metastases: narrative and critical review[J]. Front Oncol, 2024, 14: 1298605.
doi: 10.3171/jns.1987.66.1.0001 |
| [8] |
Furuse M, Nonoguchi N, Kawabata S, et al. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment[J]. Med Mol Morphol, 2015, 48(4): 183-190.
doi: 10.1007/s10014-008-0233-9 |
| [9] |
Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury[J]. Int J Radiat Oncol Biol Phys, 1980, 6(9): 1215-1228.
doi: 10.1016/0360-3016(80)90175-3 |
| [10] |
Bourbonne V, Ollivier L, Antoni D, et al. Diagnosis and management of brain radiation necrosis[J]. Cancer Radiother, 2024, 28(6-7): 547-552.
doi: 10.1080/0284186X.2018.1557786 |
| [11] | Mayo ZS, Billena C, Suh JH, et al. The dilemma of radiation necrosis from diagnosis to treatment in the management of brain metastases [J]. Neuro Oncol, 2024, 26(12 Suppl 2):S56-S65. |
| [12] |
Lee D, Riestenberg RA, Haskell-Mendoza A, et al. Brain metastasis recurrence versus radiation necrosis: evaluation and treatment[J]. Neurosurg Clin N Am, 2020, 31(4): 575-587.
doi: 10.1016/j.nec.2020.06.007 |
| [13] | Gõdény M, Remenár É, Takácsi - Nagy Z, et al. Role of MRI and CT in the evaluation of postirradiation status and complications in head and neck cancer[J]. Magy Onkol, 2018, 62(3): 159-173. |
| [14] | Khalaj K, Jacobs MA, Zhu JJ, et al. The use of apparent diffusion coefficient values for differentiating bevacizumab-related cytotoxicity from tumor recurrence and radiation necrosis in glioblastoma[J]. Cancers (Basel), 2024, 16(13): 2440. |
| [15] |
Kuroda H, Okita Y, Arisawa A, et al. Cerebral blood flow and histological analysis for the accurate differentiation of infiltrating tumor and vasogenic edema in glioblastoma[J]. PLoS One, 2025, 20(1): e0316168.
doi: 10.1007/s00234-017-1955-3 |
| [16] | Panholzer J, Malsiner-Walli G, Grün B, et al. Multiparametric analysis combining DSC-MR perfusion and [18F]FET-PET is superior to a single parameter approach for differentiation of progressive glioma from radiation necrosis[J]. Clin Neuroradiol, 2024, 34(2): 351-360. |
| [17] |
Lv XQ, Shen WR, Guo Z, et al. Diagnostic value and efficacy of multimodal magnetic resonance imaging in differentiating radiation necrosis from tumor recurrence in glioblastomas[J]. Acta Radiol, 2025, 66(4): 386-392.
doi: 10.1177/02841851241310392 |
| [18] |
Li H, Duan Y, Liu N, et al. Value of DWI combined with magnetic resonance spectroscopy in the differential diagnosis between recurrent glioma and radiation injury: a meta-analysis[J]. Int J Clin Pract, 2022, 2022: 1629570.
doi: 10.1155/2022/1629570 |
| [19] | Palmer JD, Perlow HK, Lehrer EJ, et al. Novel radiotherapeutic strategies in the management of brain metastases: challenging the dogma[J]. Neuro Oncol, 2024, 26(12 Suppl 2): S46-S55. |
| [20] |
Zhou C, Kou Y, Zhou W, et al. Diagnostic value of PET tracers in differentiating glioma tumor recurrence from treatment-related changes: a systematic review and metaanalysis[J]. AJNR Am J Neuroradiol, 2025, 46(4): 758-765.
doi: 10.3174/ajnr.A8565 |
| [21] |
Engeseth GM, Hysing LB, Yepes P, et al. Impact of RBE variations on risk estimates of temporal lobe necrosis in patients treated with intensity-modulated proton therapy for head and neck cancer[J]. Acta Oncol, 2022, 61(2): 215-222.
doi: 10.1016/j.ijrobp.2018.01.099 |
| [22] |
Brown PD, Ballman KV, Cerhan JH, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial[J]. Lancet Oncol, 2017, 18(8): 1049-1060.
doi: 10.1016/S1470-2045(17)30441-2 |
| [23] |
Prabhu RS, Akinyelu T, Vaslow ZK, et al. Risk factors for progression and toxic effects after preoperative stereotactic radiosurgery for patients with resected brain metastases[J]. JAMA Oncol, 2023, 9(8): 1066-1073.
doi: 10.1001/jamaoncol.2023.1629 |
| [24] |
Gondi V, Pugh SL, Tome WA, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase Ⅱ multi - institutional trial[J]. J Clin Oncol, 2014, 32(34): 3810-3816.
doi: 10.1200/JCO.2014.57.2909 |
| [25] |
Brown PD, Pugh S, Laack NN, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole - brain radiotherapy: a randomized, double - blind, placebo - controlled trial[J]. Neuro Oncol, 2013, 15(10): 1429-1437.
doi: 10.1093/neuonc/not114 |
| [26] |
Reck M, Mok TSK, Nishio M, et al. Atezolizumab plus bevacizumab and chemotherapy in non - small - cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open - label phase 3 trial[J]. Lancet Respir Med, 2019, 7(5): 387-401.
doi: 10.1016/S2213-2600(19)30084-0 |
| [27] |
Gonzalez J, Kumar AJ, Conrad CA, et al. Effect of bevacizumab on radiation necrosis of the brain[J]. Int J Radiat Oncol Biol Phys, 2007, 67(2): 323-326.
doi: 10.1016/j.ijrobp.2006.10.010 |
| [28] |
Weng Y, Shen J, Zhang L, et al. Low - dosage bevacizumab treatment: effect on radiation necrosis after Gamma knife radiosurgery for brain metastases[J]. Front Surg, 2021, 8: 720506.
doi: 10.3389/fsurg.2021.720506 |
| [29] |
Khan M, Zhao Z, Arooj S, et al. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: a systematic review & meta - analysis[J]. BMC Cancer, 2021, 21(1): 167.
doi: 10.1186/s12885-021-07889-3 |
| [30] |
Zoto Mustafayev T, Turna M, Bolukbasi Y, et al. Clinical and radiological effects of bevacizumab for the treatment of radionecrosis after stereotactic brain radiotherapy[J]. BMC Cancer, 2024, 24(1): 918.
doi: 10.1186/s12885-024-12643-6 |
| [31] |
Zhuo X, Huang X, Yan M, et al. Comparison between high-dose and low-dose intravenous methylprednisolone linebreak therapy in patients with brain necrosis after radiotherapy for nasopharyngeal carcinoma[J]. Radiother Oncol, 2019, 137: 16-23.
doi: 10.1016/j.radonc.2019.04.015 |
| [32] |
Wang X, Ying H, Zhou Z, et al. Successful treatment of radiation - induced temporal lobe necrosis with mouse nerve growth factor[J]. J Clin Oncol, 2011, 29(7): e166-e168.
doi: 10.1200/JCO.2010.31.7081 |
| [33] |
Ohguri T, Imada H, Kohshi K, et al. Effect of prophylactic hyperbaric oxygen treatment for radiation - induced brain injury after stereotactic radiosurgery of brain metastases[J]. Int J Radiat Oncol Biol Phys, 2007, 67(1): 248-255.
doi: 10.1016/j.ijrobp.2006.08.009 |
| [34] |
Newman WC, Goldberg J, Guadix SW, et al. The effect of surgery on radiation necrosis in irradiated brain metastases: extent of resection and long-term clinical and radiographic outcomes[J]. J Neurooncol, 2021, 153(3): 507-518.
doi: 10.1007/s11060-021-03790-y |
| [35] | Shah AH, Mahavadi AK, Morell A, et al. Salvage craniotomy for treatment - refractory symptomatic cerebral radiation necrosis[J]. Neurooncol Pract, 2020, 7(1): 94-102. |
| [36] | Wang G, Ren X, Yan H, et al. Neuroprotective effects of umbilical cord-derived mesenchymal stem cells on radiation-induced brain injury in mice[J]. Ann Clin Lab Sci, 2020, 50(1): 57-64. |
| [37] |
Wang GH, Liu Y, Wu XB, et al. Neuroprotective effects of human umbilical cord - derived mesenchymal stromal cells combined with nimodipine against radiation -induced brain injury through inhibition of apoptosis[J]. Cytotherapy, 2016, 18(1): 53-64.
doi: 10.1016/j.jcyt.2015.10.006 |
| [38] |
Simats A, Zhang S, Messerer D, et al. Innate immune memory after brain injury drives inflammatory cardiac dysfunction[J]. Cell, 2024, 187(17): 4637-4655.
doi: 10.1016/j.cell.2024.06.028 |
| [39] |
Xi S, Wang Y, Wu C, et al. Intestinal epithelial cell exosome launches IL-1β-mediated neuron injury in sepsisassociated encephalopathy[J]. Front Cell Infect Microbiol, 2022, 11: 783049.
doi: 10.3389/fcimb.2021.783049 |
| [40] |
Aydin S, Peker S. Long-term cognitive decline after subarachnoid hemorrhage: pathophysiology, management, and future directions[J]. Stroke, 2025, 56(4): 1106-1111.
doi: 10.1161/STROKEAHA.124.049969 |
| [1] | WANG Kangning, ZHU Lan, FENG Weiming, XIA Yihan, SHI Bowen, ZHANG Huan. Value of synthetic MRI in predicting treatment response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer [J]. Journal of Diagnostics Concepts & Practice, 2025, 24(02): 170-177. |
| [2] | LI Hao, LUO Yang, WANG Tingfeng, LIN Haiping, GONG Tingyue, ZHAO Yongheng, ZHONG Ming. Predictive factors of pathological complete response after neoadjuvant therapy for locally advanced rectal cancer [J]. Journal of Surgery Concepts & Practice, 2025, 30(01): 47-53. |
| [3] | TANG Xiaolu, HUA Xin, CAO Lu, CHEN Jiayi. Application of 21-Gene test in adjuvant radiotherapy for early breast cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(03): 270-276. |
| [4] | WANG Yaqi, XIA Fan, ZHANG Zhen. Review and prospect of neoadjuvant chemoradiotherapy combined with immunotherapy in locally advanced rectal cancer [J]. Journal of Surgery Concepts & Practice, 2024, 29(03): 220-229. |
| [5] | XIE Haiting, HU Yeting, LI Jun, DING Kefeng. Optimal timing of surgery for locally advance rectal cancer: how we choose [J]. Journal of Surgery Concepts & Practice, 2024, 29(03): 206-210. |
| [6] |
REN Yanxin, YU Yan, XU Kexin, et al.
Research progress of the effect of radiotherapy on breast reconstruction with prosthesis and autologous tissue after breast cancer surgery [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2023, 19(5): 511-. |
| [7] |
WU Xiaoli, BAN Yaolin, CHEN Libin, et al.
Efficacy analysis of‘core stripping’keloid thinning surgery combined with radiotherapy [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2023, 19(1): 22-. |
| [8] | CAI Xiaoyu, ZHANG Ruiguo, HU Yujing, WANG Renfei, BIAN Yanzhu. Papillary thyroid microcarcinoma should not be used as the basis for postoperative 131I therapy [J]. Journal of Surgery Concepts & Practice, 2023, 28(06): 529-535. |
| [9] | YANG Yingchi, PANG Kai, ZHANG Zhongtao. Influence of neoadjuvant radiotherapy combined with immunotherapy on minimally invasive surgeries for rectal cancer [J]. Journal of Surgery Concepts & Practice, 2023, 28(03): 186-189. |
| [10] | HE Yanyan, LI Fengzhu. Primary epithelioid angiosarcoma of the bladder: clinicopathological analysis of a case and review of literature [J]. Journal of Diagnostics Concepts & Practice, 2022, 21(06): 719-725. |
| [11] | PAN Xiangou, ZHANG Li, HOU Jiazhou, DU Shisuo, ZENG Zhaochong, WANG Binliang. Study on preoperative radiotherapy in conversion therapy for patients with primary retroperitoneal soft tissue sarcoma difficult to resect or unresectable [J]. Journal of Surgery Concepts & Practice, 2022, 27(06): 530-533. |
| [12] | GUO Yang, GUO Tian′an, XU Ye. Recent advance in neoadjuvant chemotherapy for rectal cancer [J]. Journal of Surgery Concepts & Practice, 2022, 27(04): 370-374. |
| [13] | CHEN Xianze, CHENG Xi, ZHAO Shengguang, ZHANG Tao, SHI Yiqing, LIU Kun, WANG Changgang, JIANG Yimei, JI Xiaopin, ZHAO Ren. Retrospective study on laparoscopic surgery combined with intraoperative radiotherapy in treatment of locally advanced rectal cancer [J]. Journal of Surgery Concepts & Practice, 2021, 26(01): 48-53. |
| [14] | JIANG Qing, ZHU Ming, XU Cheng, WANG Shubei, CAO Lu, CAI Rong, CHEN Jiayi, CAI Gang. Use head thermoplastic mask and breast bracket with body markers for breast cancer patient improves setup accuracy of intensity-modulated radiotherapy [J]. Journal of Surgery Concepts & Practice, 2019, 24(05): 446-451. |
| [15] | . [J]. Journal of Internal Medicine Concepts & Practice, 2019, 14(01): 39-42. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
