Journal of Internal Medicine Concepts & Practice >
Progress in the pathogenesis and treatment of focal segmental glomerulosclerosis
XU Lichen, LI Guisen . Progress in the pathogenesis and treatment of focal segmental glomerulosclerosis[J]. Journal of Internal Medicine Concepts & Practice, 2023 , 18(05) : 363 -367 . DOI: 10.16138/j.1673-6087.2023.05.012
[1] | Rosenberg AZ, Kopp JB. Focal segmental glomerulosclerosis[J]. Clin J Am Soc Nephrol, 2017, 12(3): 502-517. |
[2] | Xu X, Wang G, Chen N, et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China[J]. J Am Soc Nephrol, 2016, 27(12): 3739-3746. |
[3] | O’Shaughnessy MM, Hogan SL, Thompson BD, et al. Glomerular disease frequencies by race, sex and region: results from the International Kidney Biopsy Survey[J]. Nephrol Dial Transplant, 2018, 33(4): 661-669. |
[4] | Bukosza EN, Kratochwill K, Kornauth C, et al. Podocyte RNA sequencing reveals Wnt- and ECM-associated genes as central in FSGS[J]. PloS one, 2020, 15(4): e0231898. |
[5] | D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis[J]. N Engl J Med, 2011, 365(25): 2398-2411. |
[6] | Zink CM, Ernst S, Riehl J, et al. Trends of renal diseases in Germany: review of a regional renal biopsy database from 1990 to 2013[J]. Clin Kidney J, 2019, 12(6): 795-800. |
[7] | Simon P, Ramee MP, Boulahrouz R, et al. Epidemiologic data of primary glomerular diseases in Western France[J]. Kidney Int, 2004, 66(3): 905-908. |
[8] | Stokes MB, D’Agati VD. Morphologic variants of focal segmental glomerulosclerosis and their significance[J]. Adv Chronic Kidney Dis, 2014, 21(5): 400-407. |
[9] | Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s[J]. Nature, 1993, 362(6423): 801-809. |
[10] | Swarnalatha G, Ram R, Ismal KM, et al. Focal and segmental glomerulosclerosis: does prognosis vary with the variants?[J]. Saudi J Kidney Dis Transpl, 2015, 26(1):173-181. |
[11] | Sun L, Zhao R, Zhang L, et al. Salvianolic acid A inhibits PDGF-BB induced vascular smooth muscle cell migration and proliferation while does not constrain endothelial cell proliferation and nitric oxide biosynthesis[J]. Molecules, 2012 Mar 14, 17(3): 3333-3347. |
[12] | Gao W, Ferguson G, Connell P, et al. Glucose attenuates hypoxia-induced changes in endothelial cell growth by inhibiting HIF-1α expression[J]. Diab Vasc Dis Res, 2014, 11(4): 270-280. |
[13] | Canaud G, Dion D, Zuber J, et al. Recurrence of nephrotic syndrome after transplantation in a mixed population of children and adults: course of glomerular lesions and value of the Columbia classification of histological variants of focal and segmental glomerulosclerosis (FSGS)[J]. Nephrol Dial Transplant, 2010, 25(4): 1321-1328. |
[14] | Avila-Casado Mdel C, Perez-Torres I, Auron A, et al. Proteinuria in rats induced by serum from patients with collapsing glomerulopathy[J]. Kidney Int, 2004, 66(1):133-143. |
[15] | Gallon L, Leventhal J, Skaro A, et al. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation[J]. N Engl J Med, 2012, 366(17): 1648-1649. |
[16] | Downie ML, Gallibois C, Parekh RS, et al. Nephrotic syndrome in infants and children: pathophysiology and management[J]. Paediatr Int Child Health, 2017, 37(4):248-258. |
[17] | Delville M, Sigdel TK, Wei C, et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation[J]. Sci Transl Med, 2014, 6(256): 256ra136. |
[18] | Wei C, El Hindi S, Li J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis[J]. Nat Med, 2011, 17(8): 952-960. |
[19] | Hayek SS, Leaf DE, Samman Tahhan A, et al. Soluble urokinase receptor and acute kidney injury[J]. N Engl J Med, 2016, 374(9): 891. |
[20] | Kudose S, Batal I, Santoriello D, et al. Kidney biopsy findings in patients with COVID-19[J]. J Am Soc Nephrol, 2020, 31(9): 1959-1968. |
[21] | Klomjit N, Alexander MP, Fervenza FC, et al. COVID-19 vaccination and glomerulonephritis[J]. Kidney Int Rep, 2021, 6(12): 2969-2978. |
[22] | de Vriese AS, Sethi S, Nath KA, et al. Differentiating primary, genetic, and secondary FSGS in adults[J]. J Am Soc Nephrol, 2018, 29(3): 759-774. |
[23] | Markowitz GS, Appel GB, Fine PL, et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate[J]. J Am Soc Nephrol, 2001, 12(6): 1164-1172. |
[24] | Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD[J]. J Am Soc Nephrol, 2015, 26(2): 258-269. |
[25] | Zhuo L, Huang L, Yang Z, et al. A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis[J]. BMC Med Genet, 2019, 20(1): 111. |
[26] | Nandlal L, Winkler CA, Bhimma R, et al. Causal and putative pathogenic mutations identified in 39% of children with primary steroid-resistant nephrotic syndrome in South Africa[J]. Eur J Pediatr, 2022, 181(10): 3595-3606. |
[27] | Polat OK, Uno M, Maruyama T, et al. Contribution of coiled-coil assembly to Ca2+/calmodulin-dependent inac-tivation of TRPC6 channel and its impacts on FSGS-associated phenotypes[J]. J Am Soc Nephrol, 2019, 30(9):1587-1603. |
[28] | Husain S, Ginawi I, Bashir AI, et al. Focal and segmental glomerulosclerosis in murine models: a histological and ultrastructural characterization with immunohistochemistry correlation of glomerular CD44 and WT1 expression[J]. Ultrastruct Pathol, 2018, 42(5): 430-439. |
[29] | Ammar S, Kanoun H, Kammoun K, et al. Next-generation sequencing in patients with familial FSGS: first report of collagen gene mutations in Tunisian patients[J]. J Hum Genet, 2021, 66(8): 795-803. |
[30] | Feng D, Notbohm J, Benjamin A, et al. Disease-causing mutation in α-actinin-4 promotes podocyte detachment through maladaptation to periodic stretch[J]. Proc Natl Acad Sci U S A, 2018, 115(7): 1517-1522. |
[31] | Sanchez-Ares M, Garcia-Vidal M, Antucho EE, et al. A novel mutation, outside of the candidate region for diagnosis, in the inverted formin 2 gene can cause focal segmental glomerulosclerosis[J]. Kidney Int. 2013 Jan; 83(1):153-159. |
[32] | Vijayan P, Hack S, Yao T, et al. LAMA2 and LOXL4 are candidate FSGS genes[J]. BMC Nephrol, 2021, 22(1): 320. |
[33] | Gast C, Pengelly RJ, Lyon M, et al. Collagen(COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis[J]. Nephrol Dial Transplant, 2016, 31(6): 961-970. |
[34] | Duchateau PN, Pullinger CR, Orellana RE, et al. Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas. Identification, cloning, characterization, and plasma distribution of apolipoprotein L[J]. J Biol Chem, 1997, 272(41): 25576-25582. |
[35] | Boersma V, Moatti N, Segura-Bayona S, et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5’ end resection[J]. Nature, 2015, 521(7553):537-540. |
[36] | Connaughton DM, Kennedy C, Shril S, et al. Monogenic causes of chronic kidney disease in adults[J]. Kidney Int, 2019, 95(4): 914-928. |
[37] | Liu W, Peng L, Tian W, et al. Loss of phosphatidylserine flippase β-subunit Tmem30a in podocytes leads to albuminuria and glomerulosclerosis[J]. Dis Model Mech, 2021, 14(6): dmm048777. |
[38] | Rovin BH, Adler SG, Barratt J, et al. Executive summary of the KDIGO 2021 guideline for the management of glomerular diseases[J]. Kidney Int, 2021, 100(4): 753-779. |
[39] | Rydel JJ, Korbet SM, Borok RZ, et al. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment[J]. Am J Kidney Dis, 1995, 25(4):534-542. |
[40] | 孙良忠, 王海燕, 李敏, 等. WT1基因变异相关肾脏病临床、病理特点与基因变异类型的临床研究[J]. 中华儿科杂志, 2018, 56(10): 769-774. |
[41] | Soliman AR, Maamoun H, Soliman H, et al. Steroid resistant focal segmental glomerulosclerosis: effect of arterial hyalinosis on outcome: single center study[J]. Rom J Intern Med, 2021, 59(2): 127-133. |
[42] | Santín S, Bullich G, Tazón-Vega B, et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome[J]. Clin J Am Soc Nephrol, 2011, 6(5): 1139-1148. |
[43] | Yu CC, Fornoni A, Weins A, et al. Abatacept in B7-1-positive proteinuric kidney disease[J]. N Engl J Med, 2013, 369(25): 2416-2423. |
[44] | ElSayed NA, Aleppo G, Aroda VR, et al. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019[J]. Diabetes care, 2019, 42 Suppl 1: S90-S102. |
[45] | Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition[J]. Diabetologia, 2017, 60(2): 215-225. |
[46] | Trachtman H, Nelson P, Adler S, et al. DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS[J]. J Am Soc Nephrol, 2018, 29(11):2745-2754. |
[47] | Sinha A, Mathew G, Arushi A, et al. Sequential rituximab therapy sustains remission of nephrotic syndrome but carries high risk of adverse effects[J]. Nephrol Dial Transplant, 2023, 38(4): 939-949. |
[48] | Ravani P, Ponticelli A, Siciliano C, et al. Rituximab is a safe and effective long-term treatment for children with steroid and calcineurin inhibitor-dependent idiopathic nephrotic syndrome[J]. Kidney Int, 2013, 84(5): 1025-1033. |
[49] | Osterholt T, Todorova P, Kühne L, et al. Repetitive administration of rituximab can achieve and maintain clinical remission in patients with MCD or FSGS[J]. Sci Rep, 2023, 13(1): 6980. |
/
〈 |
|
〉 |