Journal of Internal Medicine Concepts & Practice ›› 2023, Vol. 18 ›› Issue (05): 363-367.doi: 10.16138/j.1673-6087.2023.05.012
• Review article • Previous Articles Next Articles
Received:
2023-02-27
Online:
2023-10-30
Published:
2024-01-25
Contact:
LI Guisen
E-mail:guisenli@163.com
CLC Number:
XU Lichen, LI Guisen. Progress in the pathogenesis and treatment of focal segmental glomerulosclerosis[J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(05): 363-367.
[1] |
Rosenberg AZ, Kopp JB. Focal segmental glomerulosclerosis[J]. Clin J Am Soc Nephrol, 2017, 12(3): 502-517.
doi: 10.2215/CJN.05960616 URL |
[2] |
Xu X, Wang G, Chen N, et al. Long-term exposure to air pollution and increased risk of membranous nephropathy in China[J]. J Am Soc Nephrol, 2016, 27(12): 3739-3746.
pmid: 27365535 |
[3] |
O’Shaughnessy MM, Hogan SL, Thompson BD, et al. Glomerular disease frequencies by race, sex and region: results from the International Kidney Biopsy Survey[J]. Nephrol Dial Transplant, 2018, 33(4): 661-669.
doi: 10.1093/ndt/gfx189 URL |
[4] |
Bukosza EN, Kratochwill K, Kornauth C, et al. Podocyte RNA sequencing reveals Wnt- and ECM-associated genes as central in FSGS[J]. PloS one, 2020, 15(4): e0231898.
doi: 10.1371/journal.pone.0231898 URL |
[5] |
D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis[J]. N Engl J Med, 2011, 365(25): 2398-2411.
doi: 10.1056/NEJMra1106556 URL |
[6] |
Zink CM, Ernst S, Riehl J, et al. Trends of renal diseases in Germany: review of a regional renal biopsy database from 1990 to 2013[J]. Clin Kidney J, 2019, 12(6): 795-800.
doi: 10.1093/ckj/sfz023 pmid: 31808446 |
[7] |
Simon P, Ramee MP, Boulahrouz R, et al. Epidemiologic data of primary glomerular diseases in Western France[J]. Kidney Int, 2004, 66(3): 905-908.
doi: 10.1111/j.1523-1755.2004.00834.x pmid: 15327379 |
[8] |
Stokes MB, D’Agati VD. Morphologic variants of focal segmental glomerulosclerosis and their significance[J]. Adv Chronic Kidney Dis, 2014, 21(5): 400-407.
doi: 10.1053/j.ackd.2014.02.010 URL |
[9] |
Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s[J]. Nature, 1993, 362(6423): 801-809.
doi: 10.1038/362801a0 |
[10] |
Swarnalatha G, Ram R, Ismal KM, et al. Focal and segmental glomerulosclerosis: does prognosis vary with the variants?[J]. Saudi J Kidney Dis Transpl, 2015, 26(1):173-181.
pmid: 25579744 |
[11] |
Sun L, Zhao R, Zhang L, et al. Salvianolic acid A inhibits PDGF-BB induced vascular smooth muscle cell migration and proliferation while does not constrain endothelial cell proliferation and nitric oxide biosynthesis[J]. Molecules, 2012 Mar 14, 17(3): 3333-3347.
doi: 10.3390/molecules17033333 pmid: 22418933 |
[12] |
Gao W, Ferguson G, Connell P, et al. Glucose attenuates hypoxia-induced changes in endothelial cell growth by inhibiting HIF-1α expression[J]. Diab Vasc Dis Res, 2014, 11(4): 270-280.
doi: 10.1177/1479164114533356 URL |
[13] |
Canaud G, Dion D, Zuber J, et al. Recurrence of nephrotic syndrome after transplantation in a mixed population of children and adults: course of glomerular lesions and value of the Columbia classification of histological variants of focal and segmental glomerulosclerosis (FSGS)[J]. Nephrol Dial Transplant, 2010, 25(4): 1321-1328.
doi: 10.1093/ndt/gfp500 URL |
[14] |
Avila-Casado Mdel C, Perez-Torres I, Auron A, et al. Proteinuria in rats induced by serum from patients with collapsing glomerulopathy[J]. Kidney Int, 2004, 66(1):133-143.
pmid: 15200420 |
[15] |
Gallon L, Leventhal J, Skaro A, et al. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation[J]. N Engl J Med, 2012, 366(17): 1648-1649.
doi: 10.1056/NEJMc1202500 URL |
[16] |
Downie ML, Gallibois C, Parekh RS, et al. Nephrotic syndrome in infants and children: pathophysiology and management[J]. Paediatr Int Child Health, 2017, 37(4):248-258.
doi: 10.1080/20469047.2017.1374003 URL |
[17] | Delville M, Sigdel TK, Wei C, et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation[J]. Sci Transl Med, 2014, 6(256): 256ra136. |
[18] |
Wei C, El Hindi S, Li J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis[J]. Nat Med, 2011, 17(8): 952-960.
doi: 10.1038/nm.2411 pmid: 21804539 |
[19] |
Hayek SS, Leaf DE, Samman Tahhan A, et al. Soluble urokinase receptor and acute kidney injury[J]. N Engl J Med, 2016, 374(9): 891.
doi: 10.1056/NEJMc1600136 URL |
[20] |
Kudose S, Batal I, Santoriello D, et al. Kidney biopsy findings in patients with COVID-19[J]. J Am Soc Nephrol, 2020, 31(9): 1959-1968.
doi: 10.1681/ASN.2020060802 pmid: 32680910 |
[21] |
Klomjit N, Alexander MP, Fervenza FC, et al. COVID-19 vaccination and glomerulonephritis[J]. Kidney Int Rep, 2021, 6(12): 2969-2978.
doi: 10.1016/j.ekir.2021.09.008 pmid: 34632166 |
[22] |
de Vriese AS, Sethi S, Nath KA, et al. Differentiating primary, genetic, and secondary FSGS in adults[J]. J Am Soc Nephrol, 2018, 29(3): 759-774.
doi: 10.1681/ASN.2017090958 pmid: 29321142 |
[23] |
Markowitz GS, Appel GB, Fine PL, et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate[J]. J Am Soc Nephrol, 2001, 12(6): 1164-1172.
doi: 10.1681/ASN.V1261164 pmid: 11373339 |
[24] |
Kriz W, Lemley KV. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD[J]. J Am Soc Nephrol, 2015, 26(2): 258-269.
doi: 10.1681/ASN.2014030278 pmid: 25060060 |
[25] |
Zhuo L, Huang L, Yang Z, et al. A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis[J]. BMC Med Genet, 2019, 20(1): 111.
doi: 10.1186/s12881-019-0845-4 |
[26] |
Nandlal L, Winkler CA, Bhimma R, et al. Causal and putative pathogenic mutations identified in 39% of children with primary steroid-resistant nephrotic syndrome in South Africa[J]. Eur J Pediatr, 2022, 181(10): 3595-3606.
doi: 10.1007/s00431-022-04581-x pmid: 35920919 |
[27] |
Polat OK, Uno M, Maruyama T, et al. Contribution of coiled-coil assembly to Ca2+/calmodulin-dependent inac-tivation of TRPC6 channel and its impacts on FSGS-associated phenotypes[J]. J Am Soc Nephrol, 2019, 30(9):1587-1603.
doi: 10.1681/ASN.2018070756 pmid: 31266820 |
[28] |
Husain S, Ginawi I, Bashir AI, et al. Focal and segmental glomerulosclerosis in murine models: a histological and ultrastructural characterization with immunohistochemistry correlation of glomerular CD44 and WT1 expression[J]. Ultrastruct Pathol, 2018, 42(5): 430-439.
doi: 10.1080/01913123.2018.1501125 pmid: 30285525 |
[29] |
Ammar S, Kanoun H, Kammoun K, et al. Next-generation sequencing in patients with familial FSGS: first report of collagen gene mutations in Tunisian patients[J]. J Hum Genet, 2021, 66(8): 795-803.
doi: 10.1038/s10038-021-00912-2 pmid: 33654185 |
[30] |
Feng D, Notbohm J, Benjamin A, et al. Disease-causing mutation in α-actinin-4 promotes podocyte detachment through maladaptation to periodic stretch[J]. Proc Natl Acad Sci U S A, 2018, 115(7): 1517-1522.
doi: 10.1073/pnas.1717870115 URL |
[31] |
Sanchez-Ares M, Garcia-Vidal M, Antucho EE, et al. A novel mutation, outside of the candidate region for diagnosis, in the inverted formin 2 gene can cause focal segmental glomerulosclerosis[J]. Kidney Int. 2013 Jan; 83(1):153-159.
doi: 10.1038/ki.2012.325 pmid: 22971997 |
[32] |
Vijayan P, Hack S, Yao T, et al. LAMA2 and LOXL4 are candidate FSGS genes[J]. BMC Nephrol, 2021, 22(1): 320.
doi: 10.1186/s12882-021-02524-6 pmid: 34565340 |
[33] |
Gast C, Pengelly RJ, Lyon M, et al. Collagen(COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis[J]. Nephrol Dial Transplant, 2016, 31(6): 961-970.
doi: 10.1093/ndt/gfv325 URL |
[34] |
Duchateau PN, Pullinger CR, Orellana RE, et al. Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas. Identification, cloning, characterization, and plasma distribution of apolipoprotein L[J]. J Biol Chem, 1997, 272(41): 25576-25582.
doi: 10.1074/jbc.272.41.25576 pmid: 9325276 |
[35] |
Boersma V, Moatti N, Segura-Bayona S, et al. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5’ end resection[J]. Nature, 2015, 521(7553):537-540.
doi: 10.1038/nature14216 |
[36] |
Connaughton DM, Kennedy C, Shril S, et al. Monogenic causes of chronic kidney disease in adults[J]. Kidney Int, 2019, 95(4): 914-928.
doi: S0085-2538(18)30839-1 pmid: 30773290 |
[37] |
Liu W, Peng L, Tian W, et al. Loss of phosphatidylserine flippase β-subunit Tmem30a in podocytes leads to albuminuria and glomerulosclerosis[J]. Dis Model Mech, 2021, 14(6): dmm048777.
doi: 10.1242/dmm.048777 URL |
[38] |
Rovin BH, Adler SG, Barratt J, et al. Executive summary of the KDIGO 2021 guideline for the management of glomerular diseases[J]. Kidney Int, 2021, 100(4): 753-779.
doi: 10.1016/j.kint.2021.05.015 pmid: 34556300 |
[39] |
Rydel JJ, Korbet SM, Borok RZ, et al. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment[J]. Am J Kidney Dis, 1995, 25(4):534-542.
doi: 10.1016/0272-6386(95)90120-5 pmid: 7702047 |
[40] | 孙良忠, 王海燕, 李敏, 等. WT1基因变异相关肾脏病临床、病理特点与基因变异类型的临床研究[J]. 中华儿科杂志, 2018, 56(10): 769-774. |
[41] | Soliman AR, Maamoun H, Soliman H, et al. Steroid resistant focal segmental glomerulosclerosis: effect of arterial hyalinosis on outcome: single center study[J]. Rom J Intern Med, 2021, 59(2): 127-133. |
[42] |
Santín S, Bullich G, Tazón-Vega B, et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome[J]. Clin J Am Soc Nephrol, 2011, 6(5): 1139-1148.
doi: 10.2215/CJN.05260610 URL |
[43] |
Yu CC, Fornoni A, Weins A, et al. Abatacept in B7-1-positive proteinuric kidney disease[J]. N Engl J Med, 2013, 369(25): 2416-2423.
doi: 10.1056/NEJMoa1304572 URL |
[44] | ElSayed NA, Aleppo G, Aroda VR, et al. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019[J]. Diabetes care, 2019, 42 Suppl 1: S90-S102. |
[45] |
Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition[J]. Diabetologia, 2017, 60(2): 215-225.
doi: 10.1007/s00125-016-4157-3 pmid: 27878313 |
[46] |
Trachtman H, Nelson P, Adler S, et al. DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS[J]. J Am Soc Nephrol, 2018, 29(11):2745-2754.
doi: 10.1681/ASN.2018010091 pmid: 30361325 |
[47] |
Sinha A, Mathew G, Arushi A, et al. Sequential rituximab therapy sustains remission of nephrotic syndrome but carries high risk of adverse effects[J]. Nephrol Dial Transplant, 2023, 38(4): 939-949.
doi: 10.1093/ndt/gfac228 URL |
[48] |
Ravani P, Ponticelli A, Siciliano C, et al. Rituximab is a safe and effective long-term treatment for children with steroid and calcineurin inhibitor-dependent idiopathic nephrotic syndrome[J]. Kidney Int, 2013, 84(5): 1025-1033.
doi: 10.1038/ki.2013.211 pmid: 23739238 |
[49] |
Osterholt T, Todorova P, Kühne L, et al. Repetitive administration of rituximab can achieve and maintain clinical remission in patients with MCD or FSGS[J]. Sci Rep, 2023, 13(1): 6980.
doi: 10.1038/s41598-023-32576-7 pmid: 37117201 |
[1] | ZHOU Liyang, ZHANG Chunli, DING Qiulan, LI Ya. Genetic diagnosis and clinical analysis of congenital dysfibrinogenemia with polycystic disease: a case report and literature review [J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(05): 328-333. |
[2] | ZHANG Yu, WANG Zhihong, DONG Cui, KUAI Tingting, YOU Lianlian, LIU Shuxin. Comparison of ordinary calcium-containing dialysate segmented regional citrate anticoagulation hemodialysis and heparin-free hemodialysis in patients with high risk of bleeding [J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(05): 322-327. |
[3] | WANG Weiming. Interpretation of Chinese expert consensus on understanding and management of renal anemia in diabetic kidney disease [J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(03): 137-140. |
[4] | LUO Yadan, YUAN Liying, LU Yide, WANG Ziqiu, WANG Zhaohui. Investigation of serum uric acid level in adult patients and analysis of related influencing factors [J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(03): 141-145. |
[5] | ZHANG Huijian, LI Guisen. An update on complement targeted treatment of IgA nephropathy [J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(03): 197-200. |
[6] | OUYANG Yan, CHEN Zijin, ZHANG Qianying, et al. Ruijin Hospital recommendations for diagnosis and treatment of novel coronavirus infection in chronic kidney disease population (2023) [J]. Journal of Internal Medicine Concepts & Practice, 2023, 18(01): 28-33. |
[7] | ZHANG Xiaoyan, XU Jing, QU Bin. Effect of serum vitamin D level on renal function in elderly patients with chronic kidney disease [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(04): 307-312. |
[8] | ZHANG Chunli, XU Jing, PAN Xiaoxia, HU Xiaofan, LI Ya. Analysis of clinical and histological features of IgG4-related kidney disease [J]. Journal of Internal Medicine Concepts & Practice, 2022, 17(03): 214-219. |
[9] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(05): 366-370. |
[10] | XUAN Yingli, CHEN Feihong, QIN Li, HE Ruibin, PANG Shiqing, YUAN Jiangzi. Correlation analysis of vitamin D and nocturnal blood pressure in the patients with chronic kidney disease [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(04): 246-250. |
[11] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(01): 49-52. |
[12] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(01): 4-9. |
[13] | WANG Xuejie, CHEN Zijin, DU Wen, GU Feifei, YU Haijin, ZHANG Wen, CHEN Xiaonong. Risk factors of acute kidney injury in the patients with bloodstream infection caused by different pathogens [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(01): 22-26. |
[14] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(01): 15-17. |
[15] | . [J]. Journal of Internal Medicine Concepts & Practice, 2021, 16(01): 10-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||