外科理论与实践 ›› 2021, Vol. 26 ›› Issue (02): 97-102.doi: 10.16139/j.1007-9610.2021.02.002
收稿日期:
2021-01-28
出版日期:
2021-03-25
发布日期:
2022-07-27
通讯作者:
耿智敏
E-mail:gengzhimin@mail.xjtu.edu.cn
基金资助:
ZHANG Rui, SU Jingbo, ZHANG Jian, GENG zhimin()
Received:
2021-01-28
Online:
2021-03-25
Published:
2022-07-27
Contact:
GENG zhimin
E-mail:gengzhimin@mail.xjtu.edu.cn
中图分类号:
张瑞, 苏敬博, 张健, 耿智敏. 胆道恶性肿瘤:从临床分型到分子分型[J]. 外科理论与实践, 2021, 26(02): 97-102.
ZHANG Rui, SU Jingbo, ZHANG Jian, GENG zhimin. Biliary tract carcinoma: from clinical classification to molecular classification[J]. Journal of Surgery Concepts & Practice, 2021, 26(02): 97-102.
[1] | Personeni N, Lleo A, Pressiani T, et al. Biliary tract cancers: molecular heterogeneity and new treatment options[J]. Cancers(Basel), 2020, 12(11):3370. |
[2] | 李茂岚, 刘颖斌. 胆道恶性肿瘤临床研究进展与展望[J]. 中国实用外科杂志, 2020, 40(2):167-170. |
[3] | Saha SK, Zhu AX, Fuchs CS, et al. Forty-year trends in cholangiocarcinoma incidence in the US: intrahepatic disease on the rise[J]. Oncologist, 2016, 21(5):594-599. |
[4] |
Everhart JE, Ruhl CE. Burden of digestive diseases in the United States Part Ⅲ: liver, biliary tract, and pancreas[J]. Gastroenterology, 2009, 136(4):1134-1144.
doi: 10.1053/j.gastro.2009.02.038 pmid: 19245868 |
[5] | Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and ma-nagement[J]. Nat Rev Gastro Hepat, 2020, 17(9):557-588. |
[6] |
Lamarca A, Barriuso J, Mcnamara MG, et al. Molecular targeted therapies: ready for “prime time” in biliary tract cancer[J]. J Hepatol, 2020, 73(1):170-185.
doi: S0168-8278(20)30165-3 pmid: 32171892 |
[7] |
Kelley RK, Bridgewater J, Gores GJ, et al. Systemic the-rapies for intrahepatic cholangiocarcinoma[J]. J Hepatol, 2020, 72(2):353-363.
doi: S0168-8278(19)30611-7 pmid: 31954497 |
[8] | 任泰, 李永盛, 耿亚军, 等. 中国2010—2017年胆囊癌治疗模式及预后分析[J]. 中华外科杂志, 2020, 58(9):697-706. |
[9] | 李秉璐, 吴昕. 国内外有关肝内胆管癌分型分期解读[J]. 中国实用外科杂志, 2020, 40(6):656-660. |
[10] |
Bismuth H, Nakache R, Diamond T. Management strategies in resection for hilar cholangiocarcinoma[J]. Ann Surg, 1992, 215(1):31-38.
pmid: 1309988 |
[11] |
Burke EC, Jarnagin WR, Hochwald SN, et al. Hilar cholangiocarcinoma - patterns of spread, the importance of hepatic resection for curative operation, and a presurgical clinical staging system[J]. Ann Surg, 1998, 228(3):385-392.
pmid: 9742921 |
[12] |
Deoliveira ML, Schulick RD, Nimura Y, et al. New sta-ging system and a registry for perihilar cholangiocarcinoma[J]. Hepatology, 2011, 53(4):1363-1371.
doi: 10.1002/hep.24227 pmid: 21480336 |
[13] | Sasaki R, Murata S, Oda T, et al. Evaluation of UICC-TNM and JSBS staging systems for surgical patients with extrahepatic cholangiocarcinoma[J]. Langenbecks Arch Surg, 2010, 395(6):615-623. |
[14] |
Gazzaniga GM, Faggioni A, Filauro M. Surgical treatment of proximal bile duct tumors[J]. Int Surg, 1985, 70(1):45-48.
pmid: 2410390 |
[15] | Liver Cancer Study Group of Japan. The general rules for the clinical and pathological study of primary liver cancer[M]. 2th. Japan: Kanehara, 2003:99-100. |
[16] | Yamasaki S. Intrahepatic cholangiocarcinoma: macroscopic type and stage classification[J]. J Hepatobiliary Pancreat Surg, 2003, 10(4):288-291. |
[17] | 季林华, 赵刚, 吴志勇. 肝内胆管癌分型分期与治疗[J]. 中华消化外科杂志, 2010, 9(3):193-196. |
[18] | 张东, 耿智敏, 陈晨, 等. 胆囊癌的临床分型和预后关系初步分析: 多中心回顾性临床研究[J]. 中华外科杂志, 2019, 57(4):258-264. |
[19] | Sasaki M, Sato Y, Nakanuma Y. Mutational landscape of combined hepatocellular carcinoma and cholangiocarcinoma, and its clinicopathological significance[J]. Histopa-thology, 2017, 70(3):423-434. |
[20] | Shibata T, Arai Y, Totoki Y. Molecular genomic landscapes of hepatobiliary cancer[J]. Cancer Sci, 2018, 109(5):1282-1291. |
[21] |
Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer[J]. Nat Genet, 2015, 47(9):1003-1010.
doi: 10.1038/ng.3375 pmid: 26258846 |
[22] | Javle M, Bekaii-Saab T, Jain A, et al. Biliary cancer: utility of next-generation sequencing for clinical management[J]. Cancer, 2016, 122(24):3838-3847. |
[23] | Nepal C, O′rourke CJ, Oliveira DVNP, et al. Genomic perturbations reveal distinct regulatory networks in intrahepatic cholangiocarcinoma[J]. Hepatology, 2018, 68(3):949-963. |
[24] |
Harbeck N, Penault-Llorca F, Cortes J, et al. Breast cancer[J]. Nat Rev Dis Primers, 2019, 5(1):66.
doi: 10.1038/s41572-019-0111-2 pmid: 31548545 |
[25] |
Hoshida Y, Nijman SMB, Kobayashi M, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma[J]. Cancer Res, 2009, 69(18):7385-7392.
doi: 10.1158/0008-5472.CAN-09-1089 pmid: 19723656 |
[26] |
Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer[J]. Nat Med, 2015, 21(11):1350-1356.
doi: 10.1038/nm.3967 pmid: 26457759 |
[27] |
Collisson EA, Sadanandam A, Olson P, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy[J]. Nat Med, 2011, 17(4):500-503.
doi: 10.1038/nm.2344 pmid: 21460848 |
[28] | Sia D, Hoshida Y, Villanueva A, et al. Integrative molecu-lar analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes[J]. Gastroenterology, 2013, 144(4):829-840. |
[29] | Rhee H, Ko JE, Chung T, et al. Transcriptomic and histopathological analysis of cholangiolocellular differentia-tion trait in intrahepatic cholangiocarcinoma[J]. Liver Int, 2018, 38(1):113-124. |
[30] | Ahn KS, O′brien D, Kang YN, et al. Prognostic subclass of intrahepatic cholangiocarcinoma by integrative mole-cular-clinical analysis and potential targeted approach[J]. Hepatol Int, 2019, 13(4):490-500. |
[31] | Montal R, Sia D, Montironi C, et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma[J]. J Hepatol, 2020, 73(2):315-327. |
[32] | Son KH, Ahn CB, Kim HJ, et al. Quantitative proteomic analysis of bile in extrahepatic cholangiocarcinoma patients[J]. J Cancer, 2020, 11(14):4073-4080. |
[33] | Kotawong K, Chaijaroenkul W, Roytrakul S, et al. Proteomics analysis for identification of potential cell signa-ling pathways and protein targets of actions of atractylodin and beta-eudesmol against cholangiocarcinoma[J]. Asian Pac J Cancer Prev, 2020, 21(3):621-628. |
[34] | Darby IA, Vuillier-Devillers K, Pinault E, et al. Proteo-mic analysis of differentially expressed proteins in peri-pheral cholangiocarcinoma[J]. Cancer Microenviron, 2010, 4(1):73-91. |
[35] | Yu WL, Yu GZ, Dong H, et al. Proteomics analysis identified TPI1 as a novel biomarker for predicting recurrence of intrahepatic cholangiocarcinoma[J]. J Gastroenterol, 2020, 55(12):1171-1182. |
[36] | Chang TT, Ho CH. Plasma proteome atlas for differentia-ting tumor stage and post-surgical prognosis of hepatocellular carcinoma and cholangiocarcinoma[J]. PloS One, 2020, 15(8):e0238251. |
[37] | Urman JM, Herranz JM, Uriarte I, et al. Pilot multi-omic analysis of human bile from benign and malignant biliary strictures: a machine-learning approach[J]. Cancers(Basel), 2020, 12(6):1644. |
[38] |
Liang Q, Liu H, Zhang TY, et al. Serum metabolomics uncovering specific metabolite signatures of intra- and extrahepatic cholangiocarcinoma[J]. Mol Biosyst, 2016, 12(2):334-340.
doi: 10.1039/c5mb00572h pmid: 26646623 |
[39] | 刘立果, 张一鉴, 王许安, 等. 免疫治疗在胆道恶性肿瘤中的应用进展[J]. 中华外科杂志, 2021, 59(2):158-161. |
[40] | Job S, Rapoud D, Santos AD, et al. Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma[J]. Hepatology, 2020, 72(3):965-981. |
[41] | Tamma R, Annese T, Ruggieri S, et al. Inflammatory cells infiltrate and angiogenesis in locally advanced and metastatic cholangiocarcinoma[J]. Eur J Clin Invest, 2019, 49(5):e13087. |
[42] | Nepal C, Zhu B, O′rourke CJ, et al. Integrative molecular characterization of gallbladder cancer reveals microenvironment-associated subtypes[J]. J Hepatol, 2020, S0168-8278(20):33820-33824. |
[43] |
Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma[J]. Cancer Discov, 2017, 7(10):1116-1135.
doi: 10.1158/2159-8290.CD-17-0368 pmid: 28667006 |
[1] | 王溍, 吴硕东. 先天性胆管扩张症分型及外科治疗[J]. 外科理论与实践, 2023, 28(02): 166-170. |
[2] | 马乾宸, 张本炎, 芮炜玮, 王婷, 罗方秀, 王朝夫, 袁菲. 中国3 071例胃癌病理分型分析[J]. 诊断学理论与实践, 2022, 21(05): 560-566. |
[3] | 王志威, 张晓晓, 王杰, 魏敏, 邵玉国, 籍敏, 杨莉, 何奇. 局部晚期乳腺癌患者腋窝淋巴结转移范围的影响因素分析[J]. 诊断学理论与实践, 2019, 18(2): 189-192. |
[4] | 蔡三军, 李清国. 结肠直肠癌的异质性[J]. 外科理论与实践, 2018, 23(05): 385-389. |
[5] | 吴佳毅, 靳疆, 陈伟国, 丁淑宁, 林琳, 费晓春, 洪进, 高卫奇, 朱思吉, 宗瑜, 陈小松, 黄欧, 何建蓉, 朱丽, 李亚芬, 沈坤炜,. 乳腺黏液癌21基因复发风险评分与临床病理关系[J]. 外科理论与实践, 2017, 22(05): 397-400. |
[6] | 于颖彦,. 亚洲癌症研究组新近提出胃癌分子分型的浅析[J]. 诊断学理论与实践, 2015, 14(06): 511-513. |
[7] | 李琦, 吴丽霞,. 胃癌的分子分型与个体化治疗[J]. 内科理论与实践, 2015, 10(05): 350-352. |
[8] | 朱丽, 高卫奇,. 乳腺癌分子分型时代的新辅助治疗[J]. 外科理论与实践, 2014, 19(05): 385-388. |
[9] | 龙裔宁, 陈小松, 朱思吉, 吴佳毅, 黄欧, 何建蓉, 朱丽, 李亚芬, 费晓春, 金晓龙, 沈坤炜, 陈伟国,. 乳腺癌空芯针活检后Ki67表达量改变和分子分型的关系[J]. 外科理论与实践, 2014, 19(05): 412-416. |
[10] | 曹静, 吕志排, 雷冬梅, 楚天骄, 郝志伟,. 乳腺癌的分子分型与临床病理特征及预后的关系[J]. 诊断学理论与实践, 2013, 12(04): 466-469. |
[11] | 纪元, 杜敏,. 软组织肉瘤的分子分型及其临床意义[J]. 外科理论与实践, 2012, 17(04): 390-393. |
[12] | 陈小松, 沈坤炜,. 乳腺癌个体化新辅助治疗[J]. 外科理论与实践, 2011, 16(01): 1-5. |
[13] | 郭磊, 于颖彦, 朱正纲,. 基因芯片数据挖掘与肿瘤分子分型研究[J]. 外科理论与实践, 2010, 15(01): 83-86. |
[14] | 邹声泉,. 胆汁蛋白质组研究筛选胆道肿瘤早期诊断标志物的意义[J]. 外科理论与实践, 2009, 14(02): 132-134. |
[15] | 邹声泉,. 重视胆道肿瘤的临床基础研究[J]. 外科理论与实践, 2007, 12(04): 307-309. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||