外科理论与实践 ›› 2021, Vol. 26 ›› Issue (03): 249-253.doi: 10.16139/j.1007-9610.2021.03.015
吴城孝1, 方婕2a, 周霁川2a, 肖永胜2b, 张晓光1,2a()
收稿日期:
2020-04-14
出版日期:
2021-05-25
发布日期:
2022-08-03
通讯作者:
张晓光
E-mail:zhangxg@fudan.edu.cn
WU Chengxiao1, FANG Jie2a, ZHOU Jichuan2a, XIAO Yongsheng2b, ZHANG Xiaoguang1,2a()
Received:
2020-04-14
Online:
2021-05-25
Published:
2022-08-03
摘要:
目的:探究microRNA-324-5p(miR-324-5p)在肝细胞癌(hepatocellular carcinoma, HCC)组织中的表达与病人预后危险因素。方法:通过TCGA(The Cancer Genome Atlas)数据库获得的肿瘤组织和正常肝组织miRNA表达谱数据与病人临床信息,分析miR-324-5p表达差异与病理的关系。通过绘制生存曲线分析miR-324-5p表达与病人预后的相关性。单因素和多因素Cox回归模型分析HCC相关危险因素。结果:miR-324-5p在HCC表达高于正常组织(P<0.001),且与不良预后相关。多因素Cox分析表明miR-324-5p可作为HCC预后不良的独立危险因素(P<0.05)。结论:miR-324-5p在HCC组织过表达,是HCC病人总生存期缩短的独立危险因素,为HCC预后判断的潜在生物学标志物。
中图分类号:
吴城孝, 方婕, 周霁川, 肖永胜, 张晓光. 基于TCGA数据库肝细胞癌microRNA-324-5p表达与预后危险因素分析[J]. 外科理论与实践, 2021, 26(03): 249-253.
WU Chengxiao, FANG Jie, ZHOU Jichuan, XIAO Yongsheng, ZHANG Xiaoguang. Expression of microRNA-324-5p in hepatocellular carcinoma based on the Cancer Genome Atlas (TCGA) database and analysis of prognosis risk factor[J]. Journal of Surgery Concepts & Practice, 2021, 26(03): 249-253.
表1
HCC病人miR-324-5p表达情况与临床资料特征[n(%)]
项目 | miR-324-5p 低表达 | miR-324-5p 高表达 | P值 |
---|---|---|---|
病例(n) | 187 | 188 | |
年龄 | 0.178 | ||
≤60 | 82 (21.9) | 96 (25.7) | |
>60 NAa) | 105 (28.1) 0 | 91 (24.3) 1 | |
性别 | 0.683 | ||
女 | 57 (15.2) | 62 (16.5) | |
男 | 130 (34.7) | 126 (33.6) | |
T分期 | 0.937 | ||
T1 | 95 (25.5) | 89 (23.9) | |
T2 | 46 (12.4) | 49 (13.2) | |
T3 | 39 (10.5) | 41 (11) | |
T4 NAa) | 6 (1.6) 1 | 7 (1.9) 2 | |
N分期 | 0.357 | ||
N0 | 123 (47.3) | 133 (51.2) | |
N1 NAa) | 3 (1.2) 61 | 1 (0.4) 54 | |
M分期 | 1.000 | ||
M0 | 130 (47.3) | 141 (51.3) | |
M1 NAa) | 2 (0.7) 55 | 2 (0.7) 45 | |
病理分期 | 0.898 | ||
Ⅰ | 88 (25.1) | 86 (24.5) | |
Ⅱ | 42 (12) | 45 (12.8) | |
Ⅲ | 40 (11.4) | 45 (12.8) | |
Ⅳ NAa) | 3 (0.9) 14 | 2 (0.6) 10 | |
甲胎蛋白(μg/L) | <0.001b) | ||
≤400 | 127 (44.9) | 91 (32.2) | |
>400 NAa) | 17 (6.0) 43 | 48 (17.0) 49 | |
Child-Pugh分级 | 0.258 | ||
A | 115 (47.1) | 107 (43.9) | |
B | 8 (3.3) | 13 (5.3) | |
C NAa) | 1 (0.4) 63 | 0 68 | |
Ishak评分 | 0.830 | ||
0 | 43 (19.7) | 33 (15.1) | |
1/2 | 16 (7.3) | 14 (6.4) | |
3/4 | 14 (6.4) | 16 (7.3) | |
5/6 NAa) | 45 (20.6) 69 | 37 (17.0) 88 | |
血管侵犯 | 0.598 | ||
无 | 110 (4.4) | 98 (30.6) | |
有 NAa) | 55 (17.2) 22 | 57 (17.8) 33 |
表2
OS的单因素和多因素Cox回归分析
项目 | 单因素分析 | 多因素分析 | |||
---|---|---|---|---|---|
HR (95%CI) | P值 | HR (95%CI) | P值 | ||
年龄 | 1.222 (0.860~1.738) | 0.263 | |||
性别 | 1.252 (0.875~1.792) | 0.219 | |||
T分期 | 2.617 (1.834~3.736) | <0.001a) | 1.696 (0.233~12.356) | 0.602 | |
N分期 | 2.051 (0.503~8.372) | 0.317 | |||
病理分期 | 2.519 (1.731~3.665) | <0.001a) | 1.541 (0.213~11.142) | 0.668 | |
甲胎蛋白 | 1.090 (0.667~1.784) | 0.730 | |||
Child-Pugh分级 | 1.672 (0.825~3.391) | 0.154 | |||
Ishak评分 | 0.764 (0.461~1.267) | 0.297 | |||
血管侵犯 | 1.337 (0.882~2.028) | 0.172 | |||
miR-324-5p表达 | 1.428 (1.006~2.026) | 0.046a) | 1.537 (1.058~2.233) | 0.024a) |
[1] | 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1):19-28. |
[2] |
Dai M, Chen S, Wei X, et al. Diagnosis, prognosis and bioinformatics analysis of lncRNAs in hepatocellular carcinoma[J]. Oncotarget, 2017, 8(56):95799-95809.
doi: 10.18632/oncotarget.21329 URL |
[3] |
Jiang Y, Sun A, Zhao Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma[J]. Nature, 2019, 567(7747):257-261.
doi: 10.1038/s41586-019-0987-8 URL |
[4] |
Liu YR, Tang RX, Huang WT, et al. Long noncoding RNAs in hepatocellular carcinoma: novel insights into their mechanism[J]. World J Hepatol, 2015, 7(28):2781-2791.
doi: 10.4254/wjh.v7.i28.2781 URL |
[5] |
Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers[J]. Nature, 2005, 435(7043):834-838.
doi: 10.1038/nature03702 URL |
[6] |
Farazi TA, Spitzer JI, Morozov P, et al. miRNAs in human cancer[J]. J Pathol, 2011, 223(2):102-115.
doi: 10.1002/path.2806 URL |
[7] |
Gu C, Zhang M, Sun W, et al. Upregulation of miR-324-5p inhibits proliferation and invasion of colorectal cancer cells by targeting ELAVL1[J]. Oncol Res, 2019, 27(5):515-524.
doi: 10.3727/096504018X15166183598572 URL |
[8] |
Wan Y, Luo H, Yang M, et al. miR-324-5p contributes to cell proliferation and apoptosis in pancreatic cancer by targeting KLF3[J]. Mol Ther Oncolytics, 2020, 18:432-442.
doi: 10.1016/j.omto.2020.07.011 URL |
[9] | Xu HS, Zong HL, Shang M, et al. MiR-324-5p inhibits proliferation of glioma by target regulation of GLI1[J]. Eur Rev Med Pharmacol Sci, 2014, 18(6):828-832. |
[10] |
Ishak K, Baptista A, Bianchi L, et al. Histological gra-ding and staging of chronic hepatitis[J]. J Hepatol, 1995, 22(6):696-699.
pmid: 7560864 |
[11] |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
doi: 10.1016/s0092-8674(04)00045-5 pmid: 14744438 |
[12] |
Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes[J]. Oncogene, 2006, 25(46):6188-6196.
pmid: 17028598 |
[13] |
Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues[J]. Oncogene, 2006, 25(17):2537-2545.
pmid: 16331254 |
[14] |
Mao B, Wang G. MicroRNAs involved with hepatocellular carcinoma(Review)[J]. Oncol Rep, 2015, 34(6):2811-2820.
doi: 10.3892/or.2015.4275 URL |
[15] |
Kuo WT, Yu SY, Li SC, et al. MicroRNA-324 in human cancer: miR-324-5p and miR-324-3p have distinct biological functions in human cancer[J]. Anticancer Res, 2016, 36(10):5189-5196.
doi: 10.21873/anticanres.11089 URL |
[16] | Bamodu OA, Yang CK, Cheng WH, et al. 4-acetyl-antroquinonol B suppresses SOD2-enhanced cancer stem cell-like phenotypes and chemoresistance of colorectal cancer cells by inducing hsa-mir-324 re-expression[J]. Cancers(Basel), 2018, 10(8):269. |
[17] |
Zheng Z, Li J, An J, et al. High miR-324-5p expression predicts unfavorable prognosis of gastric cancer and faci-litates tumor progression in tumor cells[J]. Diagn Pathol, 2021, 16(1):5.
doi: 10.1186/s13000-020-01063-2 URL |
[18] |
Rong Z, Wang Z, Wang X, et al. Molecular interplay between linc01134 and YY1 dictates hepatocellular carcinoma progression[J]. J Exp Clin Cancer Res, 2020, 39(1):61.
doi: 10.1186/s13046-020-01551-9 URL |
[19] |
Huang X, Sun L, Wen S, et al. RNA sequencing of plasma exosomes revealed novel functional long noncoding RNAs in hepatocellular carcinoma[J]. Cancer Sci, 2020, 111(9):3338-3349.
doi: 10.1111/cas.14516 URL |
[1] | 任新平, 李军建, 张杰, 詹维伟. 超声造影在肝局灶性病变诊疗中的应用进展[J]. 诊断学理论与实践, 2022, 21(06): 684-690. |
[2] | 马婧嶔, 杨敏捷, 颜志平. 精细TACE的治疗目标与栓塞终点[J]. 外科理论与实践, 2022, 27(02): 131-133. |
[3] | 孙惠川. 肝细胞癌转化治疗的现状与展望[J]. 外科理论与实践, 2022, 27(02): 134-138. |
[4] | 张希昊, 章馨允, 曹曼卿, 张金梁, 王华琪, 张苏, 付周, 王鲁, 张倜. 肝细胞癌的抗血管生成免疫联合介入治疗:肝动脉灌注化疗与化疗栓塞疗效的比较[J]. 外科理论与实践, 2022, 27(02): 152-157. |
[5] | 管涛(综述), 张倜, 王鲁(审校). 肝细胞癌肺转移的潜在机制和治疗进展[J]. 外科理论与实践, 2022, 27(02): 180-184. |
[6] | 黄纪伟, 邱国腾, 曾勇. 肝细胞癌外科治疗进展[J]. 外科理论与实践, 2022, 27(02): 113-118. |
[7] | 冯浩, 吕子成, 夏强. 肝癌肝移植全过程管理及治疗进展[J]. 外科理论与实践, 2022, 27(02): 119-122. |
[8] | 张勇强, 张倜, 孔银龙, 侯振宇, 李慧锴, 崔云龙, 宋天强, 李强. 术中出血对早期肝细胞癌病人围术期及预后的影响[J]. 外科理论与实践, 2018, 23(04): 342-345. |
[9] | 侯振宇, 孔银龙, 张勇强, 朱科云, 杨雪娇, 陈平, 李慧锴, 崔云龙, 宋天强, 李强, 张倜. 术前白细胞计数预测肝切除治疗超“米兰标准”肝细胞癌病人的预后[J]. 外科理论与实践, 2018, 23(04): 358-362. |
[10] | 肖永胜, 周俭. 非酒精性脂肪性肝病与肝细胞癌[J]. 外科理论与实践, 2018, 23(03): 210-213. |
[11] | 佟辉, 张家强, 祝哲诚, 彭承宏, 李涛. 超“UCSF标准”肝细胞癌肝移植术前经肝动脉化疗栓塞的疗效[J]. 外科理论与实践, 2018, 23(03): 241-246. |
[12] | 高志慧, 柏斗胜. 精准医学时代肝细胞癌破裂出血的诊治[J]. 外科理论与实践, 2018, 23(03): 217-220. |
[13] | 李涛, 祝哲诚, 彭承宏. 肝移植“精准”治疗原发性肝脏恶性肿瘤[J]. 外科理论与实践, 2018, 23(03): 200-204. |
[14] | 周恺乾, 周成, 王征. 肝异型增生结节的研究进展[J]. 外科理论与实践, 2018, 23(03): 286-288. |
[15] | 祝桂琦, 王彪, 杨怡, 代智. γδT细胞在肝细胞癌中作用的研究进展[J]. 外科理论与实践, 2018, 23(03): 289-292. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||